PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID GSBRNA2T00006792001
Common NameGSBRNA2T00006792001
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Brassiceae; Brassica
Family ERF
Protein Properties Length: 190aa    MW: 20582.3 Da    PI: 4.4622
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
GSBRNA2T00006792001genomeGenoscopeView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP2271.1e-0841712255
                  AP2 22 psengkrkrfslgkfgtaeeAakaaiaarkkleg 55
                         p   +k+ r++lg+f tae Aa+a++ a+++l+g
  GSBRNA2T00006792001 41 P---NKKSRIWLGTFKTAEIAARAHDVAALALRG 71
                         3...2479************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003802.9E-103485IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.103.8E-193881IPR001471AP2/ERF domain
CDDcd000184.33E-203881No hitNo description
SuperFamilySSF541717.85E-123881IPR016177DNA-binding domain
PROSITE profilePS5103213.8673879IPR001471AP2/ERF domain
PfamPF008472.7E-44371IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 190 aa     Download sequence    Send to blast
MNSVSTFSEL LCSENESPVN TEGGDYILAA SCPKKPAVRE PNKKSRIWLG TFKTAEIAAR  60
AHDVAALALR GRGACLNFAD SAWRLRIPET TCAKDIQKAA AEAALAFEAE KSDTTTNDHG  120
MNMASQTTVV GVVPEEQMSK GFYMDEEWMF GMPTLLADMA AGMLLPLPSV QWGHNDDFEG  180
VADINLWSY*
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in leaves and roots. {ECO:0000269|PubMed:9735350}.
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-[AG]CCGAC-3'. Binding to the C-repeat/DRE element mediates cold-inducible transcription. CBF/DREB1 factors play a key role in freezing tolerance and cold acclimation. {ECO:0000269|PubMed:11798174, ECO:0000269|PubMed:16244146}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapGSBRNA2T00006792001
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By cold stress. {ECO:0000269|PubMed:9735350, ECO:0000269|PubMed:9952441}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF3707341e-145AF370734.1 Brassica napus clone 663 CBF-like protein mRNA, complete cds.
GenBankAF4990341e-145AF499034.1 Brassica napus CBF-like protein CBF17 (CBF17) mRNA, complete cds.
GenBankEF6253421e-145EF625342.1 Brassica napus cold-induced drought responsive element binding factor I-4 (DREBI-4) mRNA, complete cds.
GenBankEF6253431e-145EF625343.1 Brassica napus cold-induced drought responsive element binding factor I-5 (DREBI-5) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001302787.11e-117dehydration-responsive element-binding protein 1B-like
SwissprotQ9SYS61e-79DRE1C_ARATH; Dehydration-responsive element-binding protein 1C
TrEMBLA0A078ITG81e-139A0A078ITG8_BRANA; BnaA08g30930D protein
STRINGBra010463.1-P1e-108(Brassica rapa)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM35528187
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G25490.13e-64C-repeat/DRE binding factor 1
Publications ? help Back to Top
  1. Keily J, et al.
    Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock.
    Plant J., 2013. 76(2): p. 247-57
    [PMID:23909712]
  2. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  3. Shi H, et al.
    The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1367-1379
    [PMID:24834923]
  4. Oakley CG,Ågren J,Atchison RA,Schemske DW
    QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs.
    Mol. Ecol., 2014. 23(17): p. 4304-15
    [PMID:25039860]
  5. Chalhoub B, et al.
    Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.
    Science, 2014. 345(6199): p. 950-3
    [PMID:25146293]
  6. Miyazaki Y,Abe H,Takase T,Kobayashi M,Kiyosue T
    Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.
    Plant Cell Rep., 2015. 34(5): p. 843-52
    [PMID:25627253]
  7. Park S, et al.
    Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.
    Plant J., 2015. 82(2): p. 193-207
    [PMID:25736223]
  8. Sazegari S,Niazi A,Ahmadi FS
    A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes.
    Bioinformation, 2015. 11(2): p. 101-6
    [PMID:25848171]
  9. Li Y,Xu B,Du Q,Zhang D
    Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.
    Planta, 2015. 242(1): p. 295-312
    [PMID:25916311]
  10. Shi H,Qian Y,Tan DX,Reiter RJ,He C
    Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.
    J. Pineal Res., 2015. 59(3): p. 334-42
    [PMID:26182834]
  11. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  12. Gehan MA, et al.
    Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Plant J., 2015. 84(4): p. 682-93
    [PMID:26369909]
  13. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  14. Chan Z, et al.
    RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
    New Phytol., 2016. 209(4): p. 1527-39
    [PMID:26522658]
  15. Wu J, et al.
    Overexpression of Muscadinia rotundifolia CBF2 gene enhances biotic and abiotic stress tolerance in Arabidopsis.
    Protoplasma, 2017. 254(1): p. 239-251
    [PMID:26795343]
  16. Gao S, et al.
    A cotton miRNA is involved in regulation of plant response to salt stress.
    Sci Rep, 2016. 6: p. 19736
    [PMID:26813144]
  17. Shi H,Wei Y,He C
    Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.
    Plant Physiol. Biochem., 2016. 100: p. 150-155
    [PMID:26828406]
  18. Norén L, et al.
    Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
    Plant Physiol., 2016. 171(2): p. 1392-406
    [PMID:27208227]
  19. Zhao C, et al.
    Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
    Plant Physiol., 2016. 171(4): p. 2744-59
    [PMID:27252305]
  20. Jia Y, et al.
    The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis.
    New Phytol., 2016. 212(2): p. 345-53
    [PMID:27353960]
  21. Zhao C,Zhu JK
    The broad roles of CBF genes: From development to abiotic stress.
    Plant Signal Behav, 2016. 11(8): p. e1215794
    [PMID:27472659]
  22. Bolt S,Zuther E,Zintl S,Hincha DK,Schmülling T
    ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation.
    Plant Cell Environ., 2017. 40(1): p. 108-120
    [PMID:27723941]
  23. Shi Y, et al.
    The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.
    J Integr Plant Biol, 2017. 59(2): p. 118-133
    [PMID:28009483]
  24. Li H, et al.
    BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis.
    Mol Plant, 2017. 10(4): p. 545-559
    [PMID:28089951]
  25. Kidokoro S, et al.
    Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
    Plant Cell, 2017. 29(4): p. 760-774
    [PMID:28351986]
  26. Li A, et al.
    Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors.
    Front Plant Sci, 2017. 8: p. 1647
    [PMID:28983312]
  27. Cho S, et al.
    Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1910
    [PMID:29163623]
  28. Beine-Golovchuk O, et al.
    Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs.
    Plant Physiol., 2018. 176(3): p. 2251-2276
    [PMID:29382692]
  29. Park S,Gilmour SJ,Grumet R,Thomashow MF
    CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy.
    PLoS ONE, 2018. 13(12): p. e0207723
    [PMID:30517145]