PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G61420.2
Common NameAtMYB28, HAG1, MFB13.22, MYB28, PMG1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family MYB
Protein Properties Length: 366aa    MW: 41133.5 Da    PI: 5.9758
Description myb domain protein 28
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G61420.2genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
  Myb_DNA-binding  1 rgrWTteEdellvdavkqlGggtWktIartmgkgRtlkqcksrwqkyl 48
                     +g+WTteEd++l+ +++ +G g W+ I+++ g++R++k+c++rw +yl
                     79********************************************97 PP

  Myb_DNA-binding   1 rgrWTteEdellvdavkqlGggtWktIartmgkgRtlkqcksrwqkyl 48 
                      rg ++ eE+++++ +++  G++ W+ Iar+++ +Rt++++k++w+++l
                      899*******************.*********.************996 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5129417.579961IPR017930Myb domain
SMARTSM007173.6E-141363IPR001005SANT/Myb domain
PfamPF002491.1E-161461IPR001005SANT/Myb domain
CDDcd001674.59E-111661No hitNo description
PROSITE profilePS5129424.19662116IPR017930Myb domain
SMARTSM007172.5E-1466114IPR001005SANT/Myb domain
PfamPF002491.4E-1367112IPR001005SANT/Myb domain
CDDcd001671.23E-1069112No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0006357Biological Processregulation of transcription from RNA polymerase II promoter
GO:0009625Biological Processresponse to insect
GO:0009682Biological Processinduced systemic resistance
GO:0009739Biological Processresponse to gibberellin
GO:0009751Biological Processresponse to salicylic acid
GO:0009753Biological Processresponse to jasmonic acid
GO:0010438Biological Processcellular response to sulfur starvation
GO:0010439Biological Processregulation of glucosinolate biosynthetic process
GO:0030154Biological Processcell differentiation
GO:0050832Biological Processdefense response to fungus
GO:0005634Cellular Componentnucleus
GO:0000981Molecular FunctionRNA polymerase II transcription factor activity, sequence-specific DNA binding
GO:0001135Molecular Functiontranscription factor activity, RNA polymerase II transcription factor recruiting
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0006325anatomyinflorescence node
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020121anatomylateral root
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001185developmental stageplant embryo globular stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 366 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1mse_C9e-25121162105C-Myb DNA-Binding Domain
1msf_C9e-25121162105C-Myb DNA-Binding Domain
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.74600.0root| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT5G61420-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: First present in stems, petioles and the main veins of true leaves in young seedlings. Later accumulates in leaves and present in lateral roots. During transition from the vegetative to the generative stage, preferentially expressed in inflorescence. {ECO:0000269|PubMed:17521412}.
UniprotTISSUE SPECIFICITY: Expressed in generative organs, mature leaves and trichomes. {ECO:0000269|PubMed:17521412, ECO:0000269|PubMed:23115560}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a putative transcription factor (MYB28).
UniProtMajor regulator of short-chained aliphatic glucosinolates (GLSs) biosynthesis. Together with MYB29/HAG3 and MYB76/HAG2, promotes aliphatic glucosinolate biosynthesis but represses indolic glucosinolate biosynthesis. Prevents insect performance (e.g. lepidopteran insect Mamestra brassicae and Spodoptera exigua) by promoting glucosinolates. {ECO:0000269|PubMed:17420480, ECO:0000269|PubMed:17521412, ECO:0000269|PubMed:18042203, ECO:0000269|PubMed:18446225, ECO:0000269|PubMed:20348214, ECO:0000269|PubMed:23580754, ECO:0000269|PubMed:23792303, ECO:0000269|PubMed:23943862}.
Function -- GeneRIF ? help Back to Top
  1. Myb28 is a positive regulator for basal-level production of aliphatic glucosinolates.
    [PMID: 17420480]
  2. We hypothesize that HAG1/MYB28 is a novel regulator of aliphatic glucosinolate biosynthesis that controls the response to biotic challenges
    [PMID: 17521412]
  3. MYB76 is not dependent on MYB28 and MYB29 for induction of aliphatic glucosinolates.
    [PMID: 20348214]
  4. Mutant plants deficient in camalexin, indole, or aliphatic glucosinolate biosynthesis were hypersusceptible to S. sclerotiorum, among them the myb28 mutant, which has a defect resulting in decreased production of long-chained aliphatic glucosinolates.
    [PMID: 21418358]
  5. MYB28 and MYB29 synergistically functioned in the glucose-induced biosynthesis of aliphatic glucosinolates, but MYB28 was predominant over MYB29.
    [PMID: 23329848]
  6. MYB28 expression was induced by sulfur deficiency, while the expression levels of MYB29 and MYB76 were positively correlated with sulfur concentration.
    [PMID: 23792303]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Slightly induced by glucose, gibberellic acid (GA), jasmonic acid (JA) and salicylic acid (SA). Transiently induced in inflorescence by mechanical stimuli such as touch or wounding, including herbivory-wounding. Up-regulated by sulfur-deficient stress. {ECO:0000269|PubMed:16463103, ECO:0000269|PubMed:17521412, ECO:0000269|PubMed:23115560, ECO:0000269|PubMed:23792303}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G01570 (R), AT5G07690 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G20610(A), AT3G01120(A), AT3G03780(A), AT3G57050(A), AT4G03060(A), AT4G13770(A), AT4G31500(R), AT5G23010(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDabscisic acid, auxin, gibberellin, jasmonic acid, salicylic acid
Interaction ? help Back to Top
Source Intact With
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Low levels of aliphatic glucosinolates and decreased repressing effect of brassinosteroid on glucosinolates. {ECO:0000269|PubMed:23580754}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G61420
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF1759980.0AF175998.1 Arabidopsis thaliana putative transcription factor (MYB28) mRNA, complete cds.
GenBankAY5196430.0AY519643.1 Arabidopsis thaliana MYB transcription factor (At5g61420) mRNA, complete cds.
GenBankBT0289590.0BT028959.1 Arabidopsis thaliana At5g61420 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_200950.10.0myb domain protein 28
SwissprotQ9SPG20.0MYB28_ARATH; Transcription factor MYB28
STRINGAT5G61420.20.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP5171784
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Stracke R,Werber M,Weisshaar B
    The R2R3-MYB gene family in Arabidopsis thaliana.
    Curr. Opin. Plant Biol., 2001. 4(5): p. 447-56
  3. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
  4. Yanhui C, et al.
    The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.
    Plant Mol. Biol., 2006. 60(1): p. 107-24
  5. Hirai MY, et al.
    Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(15): p. 6478-83
  6. Gigolashvili T,Yatusevich R,Berger B,Müller C,Flügge UI
    The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana.
    Plant J., 2007. 51(2): p. 247-61
  7. Earley KW,Shook MS,Brower-Toland B,Hicks L,Pikaard CS
    In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation.
    Plant J., 2007. 52(4): p. 615-26
  8. Gigolashvili T,Engqvist M,Yatusevich R,Müller C,Flügge UI
    HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana.
    New Phytol., 2008. 177(3): p. 627-42
  9. S
    A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.
    PLoS ONE, 2007. 2(12): p. e1322
  10. Beekwilder J, et al.
    The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.
    PLoS ONE, 2008. 3(4): p. e2068
  11. Hou X, et al.
    Global identification of DELLA target genes during Arabidopsis flower development.
    Plant Physiol., 2008. 147(3): p. 1126-42
  12. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  13. Malitsky S, et al.
    The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators.
    Plant Physiol., 2008. 148(4): p. 2021-49
  14. Sawada Y, et al.
    Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase.
    Plant Cell Physiol., 2009. 50(7): p. 1181-90
  15. S
    A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis.
    Plant Physiol., 2010. 153(1): p. 348-63
  16. Servet C,Conde e Silva N,Zhou DX
    Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis.
    Mol Plant, 2010. 3(4): p. 670-7
  17. M
    Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores.
    J. Chem. Ecol., 2010. 36(8): p. 905-13
  18. Stotz HU, et al.
    Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
    Plant J., 2011. 67(1): p. 81-93
  19. Kim K,Jiang K,Teng SL,Feldman LJ,Huang H
    Using biologically interrelated experiments to identify pathway genes in Arabidopsis.
    Bioinformatics, 2012. 28(6): p. 815-22
  20. Harper AL, et al.
    Associative transcriptomics of traits in the polyploid crop species Brassica napus.
    Nat. Biotechnol., 2012. 30(8): p. 798-802
  21. van de Mortel JE, et al.
    Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101.
    Plant Physiol., 2012. 160(4): p. 2173-88
  22. Frerigmann H,B
    Glucosinolates are produced in trichomes of Arabidopsis thaliana.
    Front Plant Sci, 2012. 3: p. 242
  23. Mewis I,Khan MA,Glawischnig E,Schreiner M,Ulrichs C
    Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.).
    PLoS ONE, 2012. 7(11): p. e48661
  24. Miao H, et al.
    Glucose signalling positively regulates aliphatic glucosinolate biosynthesis.
    J. Exp. Bot., 2013. 64(4): p. 1097-109
  25. Traka MH, et al.
    Genetic regulation of glucoraphanin accumulation in Benefort
    New Phytol., 2013. 198(4): p. 1085-95
  26. Guo R, et al.
    BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis.
    J. Exp. Bot., 2013. 64(8): p. 2401-12
  27. Li Y, et al.
    Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis.
    Plant Cell Physiol., 2013. 54(8): p. 1335-44
  28. Schweizer F, et al.
    Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior.
    Plant Cell, 2013. 25(8): p. 3117-32
  29. Augustine R,Majee M,Gershenzon J,Bisht NC
    Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea.
    J. Exp. Bot., 2013. 64(16): p. 4907-21
  30. Guo R, et al.
    Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana.
    J. Exp. Bot., 2013. 64(18): p. 5707-19
  31. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  32. Li F, et al.
    Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.).
    DNA Res., 2014. 21(4): p. 355-67
  33. Frerigmann H,Berger B,Gigolashvili T
    bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis.
    Plant Physiol., 2014. 166(1): p. 349-69
  34. Frerigmann H,Gigolashvili T
    Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency.
    Front Plant Sci, 2014. 5: p. 626
  35. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  36. Burow M, et al.
    The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis.
    Mol Plant, 2015. 8(8): p. 1201-12
  37. Martínez-Ballesta M, et al.
    The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 524
  38. Seo MS, et al.
    Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa.
    Plant Mol. Biol., 2016. 90(4-5): p. 503-16
  39. Bulgakov VP,Veremeichik GN,Grigorchuk VP,Rybin VG,Shkryl YN
    The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors.
    Plant Physiol. Biochem., 2016. 102: p. 70-9
  40. Mostafa I, et al.
    New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants.
    J Proteomics, 2016. 138: p. 1-19
  41. Smith JD,Woldemariam MG,Mescher MC,Jander G,De Moraes CM
    Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.
    Plant Physiol., 2016. 172(1): p. 181-97
  42. Aarabi F, et al.
    Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants.
    Sci Adv, 2016. 2(10): p. e1601087
  43. Mostafa I, et al.
    Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29.
    Front Plant Sci, 2017. 8: p. 534
  44. Simon MK,Skinner DJ,Gallagher TL,Gasser CS
    Integument Development in Arabidopsis Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors.
    Genetics, 2017. 207(4): p. 1489-1500
  45. Li B, et al.
    Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involved in Aliphatic Glucosinolate Biosynthesis.
    Plant Cell, 2018. 30(1): p. 178-195