PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G60910.1
Common NameAGL8, FUL, MSL3.3
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family MIKC_MADS
Protein Properties Length: 242aa    MW: 27536.4 Da    PI: 9.8581
Description AGAMOUS-like 8
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G60910.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1SRF-TF97.65.2e-31959151
                 S---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE- CS
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                 krienk+nrqvtfskRr g+lKKA+E+SvLCdaeva+i+fss+gkl+eys+
  AT5G60910.1  9 KRIENKINRQVTFSKRRSGLLKKAHEISVLCDAEVALIVFSSKGKLFEYST 59
                 79***********************************************96 PP

2K-box1041.8e-34781744100
        K-box   4 ssgksleeakaeslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkklee 100
                  ++ +  + +++e++  e+akLk+++e L++++R+++GedL+sLslkeLq+Le+qL+ ++k+iRs+Kn+ ++e+i+ lqkk k+lq++n++L kk++e
  AT5G60910.1  78 KQLVGRDVSQSENWVLEHAKLKARVEVLEKNKRNFMGEDLDSLSLKELQSLEHQLDAAIKSIRSRKNQAMFESISALQKKDKALQDHNNSLLKKIKE 174
                  56666778899***********************************************************************************987 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004328.5E-41160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006632.688161IPR002100Transcription factor, MADS-box
CDDcd002654.05E-40279No hitNo description
SuperFamilySSF554552.09E-33291IPR002100Transcription factor, MADS-box
PRINTSPR004041.1E-31323IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003191.1E-251057IPR002100Transcription factor, MADS-box
PRINTSPR004041.1E-312338IPR002100Transcription factor, MADS-box
PRINTSPR004041.1E-313859IPR002100Transcription factor, MADS-box
PfamPF014861.4E-2886172IPR002487Transcription factor, K-box
PROSITE profilePS5129715.76988178IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009911Biological Processpositive regulation of flower development
GO:0010077Biological Processmaintenance of inflorescence meristem identity
GO:0010154Biological Processfruit development
GO:0030154Biological Processcell differentiation
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000014anatomyrosette leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0005022anatomyovary wall
PO:0008019anatomyleaf lamina base
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020038anatomypetiole
PO:0020148anatomyshoot apical meristem
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 242 aa     Download sequence    Send to blast
MGRGRVQLKR IENKINRQVT FSKRRSGLLK KAHEISVLCD AEVALIVFSS KGKLFEYSTD  60
SCMERILERY DRYLYSDKQL VGRDVSQSEN WVLEHAKLKA RVEVLEKNKR NFMGEDLDSL  120
SLKELQSLEH QLDAAIKSIR SRKNQAMFES ISALQKKDKA LQDHNNSLLK KIKEREKKTG  180
QQEGQLVQCS NSSSVLLPQY CVTSSRDGFV ERVGGENGGA SSLTEPNSLL PAWMLRPTTT  240
NE
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5f28_A4e-22173172MEF2C
5f28_B4e-22173172MEF2C
5f28_C4e-22173172MEF2C
5f28_D4e-22173172MEF2C
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.54260.0floral meristem| flower| leaf| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO1453595050.0
Genevisible247553_at0.0
Expression AtlasAT5G60910-
AtGenExpressAT5G60910-
ATTED-IIAT5G60910-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Vascular tissue of cauline leaves, floral shoot apex and valves of carpels and fruits. {ECO:0000269|PubMed:9502732}.
Functional Description ? help Back to Top
Source Description
TAIRMADS box gene negatively regulated by APETALA1
UniProtProbable transcription factor that promotes early floral meristem identity in synergy with APETALA1 and CAULIFLOWER. Is required subsequently for the transition of an inflorescence meristem into a floral meristem (PubMed:28586421). Seems to be partially redundant to the function of APETALA1 and CAULIFLOWER in the up-regulation of LEAFY. Is also required for normal pattern of cell division, expansion and differentiation during morphogenesis of the silique (PubMed:28586421). Probably not required for fruit elongation but instead is required to prevent ectopic activity of IND. Represses SAUR10 expression in stems and inflorescence branches (PubMed:28586421). {ECO:0000269|PubMed:10648231, ECO:0000269|PubMed:15035986, ECO:0000269|PubMed:28586421, ECO:0000269|PubMed:9502732}.
Function -- GeneRIF ? help Back to Top
  1. Data show that LEAFY, FRUITFULL, and APETALA1 are directly activated by the microRNA-targeted transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3) to control the timing of flower formation.
    [PMID: 19686687]
  2. Two cis-elements were involved in the repression of FUL expression. The first intron of FUL was shown to participate in the development of carpel and stamen as an enhancer.
    [PMID: 21284215]
  3. Flowering is controlled by AGL24 partly independently of SOC1 and FUL.
    [PMID: 22902690]
  4. The sequential formation of FUL-SVP and FUL-SOC1 heterodimers may mediate the vegetative and meristem identity transitions, counteracting the repressive effect of FLC and SVP on flowering.
    [PMID: 24465009]
  5. SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle.
    [PMID: 28586421]
  6. Data show that FRUITFULL (FUL), a MADS-box gene involved in flowering and fruit development, has a key role in promoting meristem arrest, directly and negatively regulates APETALA2 expression in the shoot apical meristem.
    [PMID: 29422669]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT5G60910.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Dramatically up-regulated upon the transition from vegetative to reproductive development.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G69120 (R), AT2G33810 (A), AT2G45190 (A), AT4G00180 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G42830(R), AT3G58780(R), AT4G00120(R), AT5G61850(A), AT5G67110(R)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT5G60910, AT1G24260, AT1G69120
IntActSearch Q38876
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G60910
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF3869290.0AF386929.1 Arabidopsis thaliana floral homeotic protein AGL8 (MSL3.3) mRNA, complete cds.
GenBankATU334730.0U33473.1 Arabidopsis thaliana agamous-like 8 (AGL8) mRNA, complete cds.
GenBankAY0724630.0AY072463.1 Arabidopsis thaliana floral homeotic protein AGL8 (MSL3.3) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_568929.11e-179AGAMOUS-like 8
SwissprotQ388761e-180AGL8_ARATH; Agamous-like MADS-box protein AGL8
TrEMBLA0A178UM961e-177A0A178UM96_ARATH; FUL
STRINGAT5G60910.11e-178(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM79225110
Representative plantOGRP1617761
Publications ? help Back to Top
  1. Bowman JL,Baum SF,Eshed Y,Putterill J,Alvarez J
    Molecular genetics of gynoecium development in Arabidopsis.
    Curr. Top. Dev. Biol., 1999. 45: p. 155-205
    [PMID:10332605]
  2. Ferrándiz C,Gu Q,Martienssen R,Yanofsky MF
    Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER.
    Development, 2000. 127(4): p. 725-34
    [PMID:10648231]
  3. Chen C,Wang S,Huang H
    LEUNIG has multiple functions in gynoecium development in Arabidopsis.
    Genesis, 2000. 26(1): p. 42-54
    [PMID:10660672]
  4. Ferr
    Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development.
    Science, 2000. 289(5478): p. 436-8
    [PMID:10903201]
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  6. Elo A,Lemmetyinen J,Turunen ML,Tikka L,Sopanen T
    Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula).
    Physiol Plant, 2001. 112(1): p. 95-103
    [PMID:11319020]
  7. Vivian-Smith A,Luo M,Chaudhury A,Koltunow A
    Fruit development is actively restricted in the absence of fertilization in Arabidopsis.
    Development, 2001. 128(12): p. 2321-31
    [PMID:11493551]
  8. M
    The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development.
    Plant J., 2001. 28(2): p. 169-79
    [PMID:11722760]
  9. Rajani S,Sundaresan V
    The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence.
    Curr. Biol., 2001. 11(24): p. 1914-22
    [PMID:11747817]
  10. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
    [PMID:12837945]
  11. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  12. Wen J,Lease KA,Walker JC
    DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development.
    Plant J., 2004. 37(5): p. 668-77
    [PMID:14871303]
  13. Liljegren SJ, et al.
    Control of fruit patterning in Arabidopsis by INDEHISCENT.
    Cell, 2004. 116(6): p. 843-53
    [PMID:15035986]
  14. Fornara F, et al.
    Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes.
    Plant Physiol., 2004. 135(4): p. 2207-19
    [PMID:15299121]
  15. Espinosa-Soto C,Padilla-Longoria P,Alvarez-Buylla ER
    A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles.
    Plant Cell, 2004. 16(11): p. 2923-39
    [PMID:15486106]
  16. de Folter S, et al.
    Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    Plant Cell, 2005. 17(5): p. 1424-33
    [PMID:15805477]
  17. Robles P,Pelaz S
    Flower and fruit development in Arabidopsis thaliana.
    Int. J. Dev. Biol., 2005. 49(5-6): p. 633-43
    [PMID:16096970]
  18. Teper-Bamnolker P,Samach A
    The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves.
    Plant Cell, 2005. 17(10): p. 2661-75
    [PMID:16155177]
  19. Dinneny JR,Weigel D,Yanofsky MF
    A genetic framework for fruit patterning in Arabidopsis thaliana.
    Development, 2005. 132(21): p. 4687-96
    [PMID:16192305]
  20. Sundström JF,Nakayama N,Glimelius K,Irish VF
    Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Plant J., 2006. 46(4): p. 593-600
    [PMID:16640596]
  21. Balanz
    Patterning the female side of Arabidopsis: the importance of hormones.
    J. Exp. Bot., 2006. 57(13): p. 3457-69
    [PMID:17023565]

  22. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene.
    Plant Biotechnol. J., 2006. 4(1): p. 45-51
    [PMID:17177784]
  23. Tani E,Polidoros AN,Tsaftaris AS
    Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation.
    Tree Physiol., 2007. 27(5): p. 649-59
    [PMID:17267356]
  24. Popescu SC, et al.
    Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(11): p. 4730-5
    [PMID:17360592]
  25. Alonso-Cantabrana H, et al.
    Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene.
    Development, 2007. 134(14): p. 2663-71
    [PMID:17592013]
  26. Smykal P,Gennen J,De Bodt S,Ranganath V,Melzer S
    Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches.
    Plant Mol. Biol., 2007. 65(3): p. 233-42
    [PMID:17660946]
  27. Preston JC,Kellogg EA
    Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses.
    Plant J., 2007. 52(1): p. 69-81
    [PMID:17666026]
  28. de Folter S,Urbanus SL,van Zuijlen LG,Kaufmann K,Angenent GC
    Tagging of MADS domain proteins for chromatin immunoprecipitation.
    BMC Plant Biol., 2007. 7: p. 47
    [PMID:17868439]
  29. Leseberg CH, et al.
    Interaction study of MADS-domain proteins in tomato.
    J. Exp. Bot., 2008. 59(8): p. 2253-65
    [PMID:18487636]
  30. Mitsuda N,Ohme-Takagi M
    NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity.
    Plant J., 2008. 56(5): p. 768-78
    [PMID:18657234]
  31. Melzer S, et al.
    Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana.
    Nat. Genet., 2008. 40(12): p. 1489-92
    [PMID:18997783]
  32. Sather DN,Golenberg EM
    Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution.
    Planta, 2009. 229(3): p. 507-21
    [PMID:19005675]
  33. Mummenhoff K,Polster A,M
    Lepidium as a model system for studying the evolution of fruit development in Brassicaceae.
    J. Exp. Bot., 2009. 60(5): p. 1503-13
    [PMID:19052256]
  34. Urbanus SL, et al.
    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana.
    BMC Plant Biol., 2009. 9: p. 5
    [PMID:19138429]
  35. Girin T,Sorefan K,Ostergaard L
    Meristematic sculpting in fruit development.
    J. Exp. Bot., 2009. 60(5): p. 1493-502
    [PMID:19246597]
  36. D'Aloia M, et al.
    Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba.
    Plant J., 2009. 59(6): p. 962-73
    [PMID:19473326]
  37. Mitsuda N,Ohme-Takagi M
    Functional analysis of transcription factors in Arabidopsis.
    Plant Cell Physiol., 2009. 50(7): p. 1232-48
    [PMID:19478073]
  38. Yamaguchi A, et al.
    The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1.
    Dev. Cell, 2009. 17(2): p. 268-78
    [PMID:19686687]
  39. Shikata M,Koyama T,Mitsuda N,Ohme-Takagi M
    Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase.
    Plant Cell Physiol., 2009. 50(12): p. 2133-45
    [PMID:19880401]
  40. Preston JC,Hileman LC
    SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Plant J., 2010. 62(4): p. 704-12
    [PMID:20202170]
  41. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
    [PMID:20409275]
  42. Ruokolainen S, et al.
    Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition.
    BMC Plant Biol., 2010. 10: p. 128
    [PMID:20579337]
  43. Xu M, et al.
    Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.
    Plant J., 2010. 63(6): p. 974-89
    [PMID:20626659]
  44. Chu T,Xie H,Xu Y,Ma R
    [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana].
    Sheng Wu Gong Cheng Xue Bao, 2010. 26(11): p. 1546-54
    [PMID:21284215]
  45. Li Y, et al.
    A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation.
    Acta Biochim. Biophys. Sin. (Shanghai), 2011. 43(8): p. 607-17
    [PMID:21733855]
  46. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
    [PMID:21798944]
  47. Groszmann M,Paicu T,Alvarez JP,Swain SM,Smyth DR
    SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development.
    Plant J., 2011. 68(5): p. 816-29
    [PMID:21801252]
  48. Ripoll JJ,Roeder AH,Ditta GS,Yanofsky MF
    A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development.
    Development, 2011. 138(23): p. 5167-76
    [PMID:22031547]
  49. Nakano T, et al.
    MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development.
    Plant Physiol., 2012. 158(1): p. 439-50
    [PMID:22106095]
  50. Smaczniak C, et al.
    Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1560-5
    [PMID:22238427]
  51. Imura Y, et al.
    CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis.
    Plant Cell Physiol., 2012. 53(2): p. 287-303
    [PMID:22247249]
  52. Kinjo H,Shitsukawa N,Takumi S,Murai K
    Diversification of three APETALA1/FRUITFULL-like genes in wheat.
    Mol. Genet. Genomics, 2012. 287(4): p. 283-94
    [PMID:22314801]
  53. Torti S, et al.
    Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering.
    Plant Cell, 2012. 24(2): p. 444-62
    [PMID:22319055]
  54. Kim JJ, et al.
    The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis.
    Plant Physiol., 2012. 159(1): p. 461-78
    [PMID:22427344]
  55. Li G, et al.
    Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis.
    Plant J., 2012. 72(2): p. 261-70
    [PMID:22694359]
  56. Torti S,Fornara F
    AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition.
    Plant Signal Behav, 2012. 7(10): p. 1251-4
    [PMID:22902690]
  57. Avino M,Kramer EM,Donohue K,Hammel AJ,Hall JC
    Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes.
    Evodevo, 2012. 3(1): p. 20
    [PMID:22943452]
  58. Bemer M, et al.
    The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.
    Plant Cell, 2012. 24(11): p. 4437-51
    [PMID:23136376]
  59. M
    Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes.
    Plant J., 2013. 73(5): p. 824-35
    [PMID:23173897]
  60. Chung KS,Lee JH,Lee JS,Ahn JH
    Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana.
    Mol. Cells, 2013. 35(6): p. 519-25
    [PMID:23515580]
  61. Yu Y, et al.
    MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering.
    Plant Sci., 2013. 212: p. 1-9
    [PMID:24094048]
  62. Balanz
    Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1.
    J. Exp. Bot., 2014. 65(4): p. 1193-203
    [PMID:24465009]
  63. Pabón-Mora N,Wong GK,Ambrose BA
    Evolution of fruit development genes in flowering plants.
    Front Plant Sci, 2014. 5: p. 300
    [PMID:25018763]
  64. Jaradat MR,Ruegger M,Bowling A,Butler H,Cutler AJ
    A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.
    GM Crops Food, 2014. 5(4): p. 302-20
    [PMID:25523176]
  65. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  66. Wang C,Dehesh K
    From retrograde signaling to flowering time.
    Plant Signal Behav, 2015. 10(6): p. e1022012
    [PMID:26098376]
  67. Borghi M,Xie DY
    Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL.
    Planta, 2016. 243(2): p. 549-61
    [PMID:26530959]
  68. Yu Y, et al.
    WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana.
    Plant J., 2016. 85(1): p. 96-106
    [PMID:26643131]
  69. McCarthy EW,Mohamed A,Litt A
    Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence.
    Front Plant Sci, 2015. 6: p. 1076
    [PMID:26697035]
  70. Davin N, et al.
    Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.
    Plant J., 2016. 86(5): p. 376-90
    [PMID:26952251]
  71. Hyun Y, et al.
    Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem.
    Dev. Cell, 2016. 37(3): p. 254-66
    [PMID:27134142]
  72. José Ripoll J, et al.
    microRNA regulation of fruit growth.
    Nat Plants, 2015. 1(4): p. 15036
    [PMID:27247036]
  73. Li W,Wang H,Yu D
    Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions.
    Mol Plant, 2016. 9(11): p. 1492-1503
    [PMID:27592586]
  74. Eldridge T, et al.
    Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy.
    Development, 2016. 143(18): p. 3394-406
    [PMID:27624834]
  75. Bemer M, et al.
    FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture.
    J. Exp. Bot., 2017. 68(13): p. 3391-3403
    [PMID:28586421]
  76. Sehra B,Franks RG
    Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development.
    Front Plant Sci, 2017. 8: p. 1712
    [PMID:29085379]
  77. Balanzà V, et al.
    Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway.
    Nat Commun, 2018. 9(1): p. 565
    [PMID:29422669]
  78. Mandel MA,Yanofsky MF
    The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1.
    Plant Cell, 1995. 7(11): p. 1763-71
    [PMID:8535133]
  79. Gu Q,Ferrándiz C,Yanofsky MF,Martienssen R
    The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.
    Development, 1998. 125(8): p. 1509-17
    [PMID:9502732]