PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G53950.1
Common NameANAC098, ATCUC2, CUC2, K19P17.12, NAC098
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family NAC
Protein Properties Length: 375aa    MW: 41434.3 Da    PI: 8.5221
Description NAC family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G53950.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
          NAM   1 97 
                  lppGfrFhPtdeel+++yL +kv +  ++  ++i+evd++k+ePw+Lp ++k +ekewyfFs rd+ky+tg r+nrat++gyWkatgkd+e++s+ + 
                  79*************************999.89***************99999****************************************97455 PP

          NAM  98 elvglkktLvfykgrapkgektdWvmheyrle 129
                  67****************************85 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019414.45E-634169IPR003441NAC domain
PROSITE profilePS5100559.63917169IPR003441NAC domain
PfamPF023655.1E-2918144IPR003441NAC domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010072Biological Processprimary shoot apical meristem specification
GO:0010160Biological Processformation of organ boundary
GO:0010223Biological Processsecondary shoot formation
GO:0048366Biological Processleaf development
GO:0048504Biological Processregulation of timing of organ formation
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020144anatomyapical meristem
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 375 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3swm_A6e-521717420173NAC domain-containing protein 19
3swm_B6e-521717420173NAC domain-containing protein 19
3swm_C6e-521717420173NAC domain-containing protein 19
3swm_D6e-521717420173NAC domain-containing protein 19
3swp_A6e-521717420173NAC domain-containing protein 19
3swp_B6e-521717420173NAC domain-containing protein 19
3swp_C6e-521717420173NAC domain-containing protein 19
3swp_D6e-521717420173NAC domain-containing protein 19
4dul_A6e-521717417170NAC domain-containing protein 19
4dul_B6e-521717417170NAC domain-containing protein 19
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT5G53950-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: First expressed in early to mid-globular-stage embryos. In late globular stage, detected as a stripe running medially across the top of the embryo. In heart stage embryo, expression is restricted to a stripe between the cotyledon primordia, but confined to hypodermal cells. In the bending-cotyledon stage, localized in a region surrounding the SAM, that correspond to the boundary region of cotyledon margins (BCM) and the boundaries between SAM and cotyledons, including protoderm cells. Observed in the margins of leaf primordia, and later restricted to the leaf sinus region, with a diminution in outgrowing teeth. Restricted to the proximal part of mature leaves. Expressed at the boundaries between the inflorescence meristem (IM) and flower primordia. Once the flower starts to grow out and the internode begin to elongates, restricted to the axils of the floral pedicels through several nodes. Detected within floral primordia, between sepal primordia and the floral meristem. Also present at the boundaries of individual sepal primordia, as well as in the region surrounding each petal and stamen primordium. Later detected transiently at the boundaries between locules of each theca in anthers. Expression at the inner part of presumtive septal regions that raises to include presumptive placenta, at the tips of septal primordia, as septum grow. Localized in the fused region of the septum. Found at the boundaries of ovule primordia, and later at the boundary between the nucellus and the chalaza. {ECO:0000269|PubMed:10079219, ECO:0000269|PubMed:10750709, ECO:0000269|PubMed:17098808, ECO:0000269|PubMed:17251269}.
UniprotTISSUE SPECIFICITY: Mostly expressed in buds and flowers, and, to a lower extent, in the aerial parts of seedling, inflorescence and old silique. In a general manner, present at the boundaries between mersitems and araising primordia. {ECO:0000269|PubMed:10750709, ECO:0000269|PubMed:15053771, ECO:0000269|PubMed:9212461}.
Functional Description ? help Back to Top
Source Description
TAIRTranscriptional activator of the NAC gene family, with CUC1 redundantly required for embryonic apical meristem formation, cotyledon separation and expression of STM. Proper timing of CUC2 expression is required to maintain the phyllotactic pattern initiated in the meristem. CUC2 expression in leaf sinus region is required for serration and the extent of serration is modulated by mir164A mediated repression of CUC2.
UniProtTranscription activator of STM and KNAT6. Involved in molecular mechanisms regulating shoot apical meristem (SAM) formation during embryogenesis and organ separation. Required for the fusion of septa of gynoecia along the length of the ovaries. Activates the shoot formation in callus in a STM-dependent manner. Controls leaf margin development and required for leaf serration. Involved in axillary meristem initiation and separation of the meristem from the main stem. Regulates the phyllotaxy throughout the plant development. Seems to act as an inhibitor of cell division. {ECO:0000269|PubMed:10079219, ECO:0000269|PubMed:10750709, ECO:0000269|PubMed:12163400, ECO:0000269|PubMed:12492830, ECO:0000269|PubMed:12610213, ECO:0000269|PubMed:15202996, ECO:0000269|PubMed:15294871, ECO:0000269|PubMed:15500463, ECO:0000269|PubMed:15723790, ECO:0000269|PubMed:16798887, ECO:0000269|PubMed:17098808, ECO:0000269|PubMed:17122068, ECO:0000269|PubMed:17251269, ECO:0000269|PubMed:17287247, ECO:0000269|PubMed:9212461}.
Function -- GeneRIF ? help Back to Top
  1. The molecular basis for the activity of the protein.
    [PMID: 15500463]
  2. The balance between coexpressed CUC2 and MIR164A then determines the extent of serration.
    [PMID: 17098808]
  3. We show here that plants expressing a miR164-resistant CUP-SHAPED COTYLEDON2 (CUC2) gene have an abnormal phyllotactic pattern in the fully grown stem, despite the pattern of organ initiation by the meristem being normal.
    [PMID: 17251269]
  4. Regulation of axillary meristem formation by miR164 is mediated through CUC1 and CUC2, which in turn regulate LAS.
    [PMID: 18346190]
  5. miRNA164 and CUC2 form a central regulatory module that acts as a governor of lateral organ patterning and expansion.
    [PMID: 19154203]
  6. CUC2 and CUC3 expression mediated by AHK2 and AHK3 signaling may play roles in regulation of flower development.
    [PMID: 19913077]
  7. CUC2 promotes outgrowth of leaf teeth via cell division.
    [PMID: 20128880]
  8. CUC2 and CUC3 are expressed in leaf primordia and are required for wild-type serration. CUC1 and CUC2 resulted from duplications of a unique ancestral gene and show different patterns of evolution.
    [PMID: 21258003]
  9. CUC2 is a predictive marker for the acquisition of root explant competence for root and shoot organogenesis.
    [PMID: 21507507]
  10. SPT negatively regulates CUC1 and CUC2 expression in the apical part of the gynoecium.
    [PMID: 22514090]
  11. DPA4 expression domains overlap with those of the known leaf shape regulator CUP-SHAPED COTYLEDON 2 (CUC2) and we provide evidence that DPA4 negatively regulates CUC2 expression independently of MIR164A, an established regulator of CUC2
    [PMID: 22675210]
  12. Cup-shaped cotyledon (CUC)1, CUC2, and AINTEGUMENTA (ANT) have additive effects on ovule primordia formation.
    [PMID: 23941199]
  13. The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis.
    [PMID: 25681504]
  14. cuc1 grf1/2/3, cuc2 grf1/2/3, and cuc3 grf1/2/3 quadruple mutants showed dramatic increases in cotyledon fusion as well as floral organ fusion.
    [PMID: 25761011]
  15. PLT3, PLT5, and PLT7 additionally regulate and require the shoot-promoting factor CUP-SHAPED COTYLEDON2 (CUC2) to complete the shoot-formation program.
    [PMID: 25819565]
  16. Genetic analysis established that SVR9/SVR9-LIKE1 (SVR9L1)-mediated leaf margin development is dependent on CUP-SHAPED COTYLEDON2 (CUC2) activities and is independent of their roles in chloroplast development.
    [PMID: 27535792]
  17. we show that CUC2 acts as a trigger to promote growth through the activation of three functional relays. In particular, we show that KLUH acts downstream of CUC2 to modulate auxin response and that expressing KLUH can compensate for deficient CUC2 expression during tooth growth.
    [PMID: 30677017]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By BRM and SYD, at the chromatin level, and conferring a very specific spatial expression pattern. Precise spatial regulation by post-transcriptional repression directed by the microRNA miR164. {ECO:0000269|PubMed:15202996, ECO:0000269|PubMed:15294871, ECO:0000269|PubMed:15723790, ECO:0000269|PubMed:16854978, ECO:0000269|PubMed:17251269, ECO:0000269|PubMed:17287247}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G65620 (R), AT2G36890 (A), AT2G37630 (R), AT5G23000 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G23380(A), AT1G55580(A), AT1G62360(A), AT1G76420(A), AT2G31160(A), AT3G23290(A)
Regulation -- MicroRNA ? help Back to Top
Source Description
miRTarBaseRegulated by ath-miR164b, ath-miR164a
Regulation -- Hormone ? help Back to Top
Source Hormone
Interaction ? help Back to Top
Source Intact With
IntActSearch O04017
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G53950
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankBT0300260.0BT030026.1 Arabidopsis thaliana At5g53950 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_200206.10.0NAC (No Apical Meristem) domain transcriptional regulator superfamily protein
SwissprotO040170.0NAC98_ARATH; Protein CUP-SHAPED COTYLEDON 2
STRINGAT5G53950.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1715800
Publications ? help Back to Top
  1. Aida M,Ishida T,Tasaka M
    Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes.
    Development, 1999. 126(8): p. 1563-70
  2. Kikuchi K, et al.
    Molecular analysis of the NAC gene family in rice.
    Mol. Gen. Genet., 2000. 262(6): p. 1047-51
  3. Ishida T,Aida M,Takada S,Tasaka M
    Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana.
    Plant Cell Physiol., 2000. 41(1): p. 60-7
  4. Vernoux T,Kronenberger J,Grandjean O,Laufs P,Traas J
    PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem.
    Development, 2000. 127(23): p. 5157-65
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  6. Takada S,Hibara K,Ishida T,Tasaka M
    The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation.
    Development, 2001. 128(7): p. 1127-35
  7. Aida M,Vernoux T,Furutani M,Traas J,Tasaka M
    Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo.
    Development, 2002. 129(17): p. 3965-74
  8. Duval M,Hsieh TF,Kim SY,Thomas TL
    Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily.
    Plant Mol. Biol., 2002. 50(2): p. 237-48
  9. Cary AJ,Che P,Howell SH
    Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana.
    Plant J., 2002. 32(6): p. 867-77
  10. Daimon Y,Takabe K,Tasaka M
    The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli.
    Plant Cell Physiol., 2003. 44(2): p. 113-21
  11. Greve K,La Cour T,Jensen MK,Poulsen FM,Skriver K
    Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization.
    Biochem. J., 2003. 371(Pt 1): p. 97-108
  12. Vroemen CW,Mordhorst AP,Albrecht C,Kwaaitaal MA,de Vries SC
    The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis.
    Plant Cell, 2003. 15(7): p. 1563-77
  13. Hibara K,Takada S,Tasaka M
    CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation.
    Plant J., 2003. 36(5): p. 687-96
  14. Ooka H, et al.
    Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.
    DNA Res., 2003. 10(6): p. 239-47
  15. Breuil-Broyer S, et al.
    High-resolution boundary analysis during Arabidopsis thaliana flower development.
    Plant J., 2004. 38(1): p. 182-92
  16. Mallory AC,Dugas DV,Bartel DP,Bartel B
    MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs.
    Curr. Biol., 2004. 14(12): p. 1035-46
  17. Laufs P,Peaucelle A,Morin H,Traas J
    MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems.
    Development, 2004. 131(17): p. 4311-22
  18. Furutani M, et al.
    PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis.
    Development, 2004. 131(20): p. 5021-30
  19. Taoka K, et al.
    The NAC domain mediates functional specificity of CUP-SHAPED COTYLEDON proteins.
    Plant J., 2004. 40(4): p. 462-73
  20. Baker CC,Sieber P,Wellmer F,Meyerowitz EM
    The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis.
    Curr. Biol., 2005. 15(4): p. 303-15
  21. Kidner CA,Martienssen RA
    The role of ARGONAUTE1 (AGO1) in meristem formation and identity.
    Dev. Biol., 2005. 280(2): p. 504-17
  22. Yanai O, et al.
    Arabidopsis KNOXI proteins activate cytokinin biosynthesis.
    Curr. Biol., 2005. 15(17): p. 1566-71
  23. Zimmermann R,Werr W
    Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L.
    Plant Mol. Biol., 2005. 58(5): p. 669-85
  24. Keller T,Abbott J,Moritz T,Doerner P
    Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development.
    Plant Cell, 2006. 18(3): p. 598-611
  25. Belles-Boix E, et al.
    KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation.
    Plant Cell, 2006. 18(8): p. 1900-7
  26. Kwon CS, et al.
    A role for chromatin remodeling in regulation of CUC gene expression in the Arabidopsis cotyledon boundary.
    Development, 2006. 133(16): p. 3223-30
  27. Nikovics K, et al.
    The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis.
    Plant Cell, 2006. 18(11): p. 2929-45
  28. Kim YS, et al.
    A membrane-bound NAC transcription factor regulates cell division in Arabidopsis.
    Plant Cell, 2006. 18(11): p. 3132-44
  29. Zhong R,Demura T,Ye ZH
    SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis.
    Plant Cell, 2006. 18(11): p. 3158-70
  30. Hibara K, et al.
    Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation.
    Plant Cell, 2006. 18(11): p. 2946-57
  31. Zluvova J,Nicolas M,Berger A,Negrutiu I,Mon
    Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(49): p. 18854-9
  32. Peaucelle A,Morin H,Traas J,Laufs P
    Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis.
    Development, 2007. 134(6): p. 1045-50
  33. Sieber P,Wellmer F,Gheyselinck J,Riechmann JL,Meyerowitz EM
    Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness.
    Development, 2007. 134(6): p. 1051-60
  34. Gordon SP, et al.
    Pattern formation during de novo assembly of the Arabidopsis shoot meristem.
    Development, 2007. 134(19): p. 3539-48
  35. Xu B, et al.
    Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development.
    Plant Physiol., 2008. 146(2): p. 566-75
  36. Raman S, et al.
    Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana.
    Plant J., 2008. 55(1): p. 65-76
  37. Dortay H, et al.
    Toward an interaction map of the two-component signaling pathway of Arabidopsis thaliana.
    J. Proteome Res., 2008. 7(9): p. 3649-60
  38. Tamaki H, et al.
    Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature-sensitive mutants of Arabidopsis.
    Plant J., 2009. 57(6): p. 1027-39
  39. Larue CT,Wen J,Walker JC
    A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis.
    Plant J., 2009. 58(3): p. 450-63
  40. Koizumi A,Yamanaka K,Kawano S
    Carpel development in a floral mutant of dioecious Silene latifolia producing asexual and female-like flowers.
    J. Plant Physiol., 2009. 166(16): p. 1832-8
  41. Lee DK,Geisler M,Springer PS
    LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis.
    Development, 2009. 136(14): p. 2423-32
  42. Kim SG,Park CM
    Membrane-mediated salt stress signaling in flowering time control.
    Plant Signal Behav, 2007. 2(6): p. 517-8
  43. Peaucelle A,Laufs P
    Phyllotaxy: Beyond the Meristem and Auxin Comes the miRNA.
    Plant Signal Behav, 2007. 2(4): p. 293-5
  44. Mon
    Sex determination in plants.
    Plant Signal Behav, 2007. 2(3): p. 178-9
  45. Li XG, et al.
    Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis.
    Gene, 2010. 450(1-2): p. 109-20
  46. Koizumi A, et al.
    Two separate pathways including SlCLV1, SlSTM and SlCUC that control carpel development in a bisexual mutant of Silene latifolia.
    Plant Cell Physiol., 2010. 51(2): p. 282-93
  47. Kawamura E,Horiguchi G,Tsukaya H
    Mechanisms of leaf tooth formation in Arabidopsis.
    Plant J., 2010. 62(3): p. 429-41
  48. Yamaguchi M, et al.
    VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis.
    Plant Cell, 2010. 22(4): p. 1249-63
  49. Yabuta Y, et al.
    Identification of recognition sequence of ANAC078 protein by the cyclic amplification and selection of targets technique.
    Plant Signal Behav, 2010. 5(6): p. 695-7
  50. Wang H, et al.
    Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(51): p. 22338-43
  51. Szakonyi D,Byrne ME
    Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana.
    Plant J., 2011. 65(2): p. 269-81
  52. Hasson A, et al.
    Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development.
    Plant Cell, 2011. 23(1): p. 54-68
  53. Bilsborough GD, et al.
    Model for the regulation of Arabidopsis thaliana leaf margin development.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(8): p. 3424-9
  54. Li P, et al.
    Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(8): p. 3436-41
  55. Takeda S, et al.
    CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells.
    Plant J., 2011. 66(6): p. 1066-77
  56. Szakonyi D,Byrne ME
    Involvement of ribosomal protein RPL27a in meristem activity and organ development.
    Plant Signal Behav, 2011. 6(5): p. 712-4
  57. Motte H,Verstraeten I,Werbrouck S,Geelen D
    CUC2 as an early marker for regeneration competence in Arabidopsis root explants.
    J. Plant Physiol., 2011. 168(13): p. 1598-601
  58. Spinelli SV,Martin AP,Viola IL,Gonzalez DH,Palatnik JF
    A mechanistic link between STM and CUC1 during Arabidopsis development.
    Plant Physiol., 2011. 156(4): p. 1894-904
  59. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
  60. Uberti-Manassero NG,Lucero LE,Viola IL,Vegetti AC,Gonzalez DH
    The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins.
    J. Exp. Bot., 2012. 63(2): p. 809-23
  61. Zhao L, et al.
    Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants.
    J. Exp. Bot., 2012. 63(8): p. 3257-70
  62. Nahar MA,Ishida T,Smyth DR,Tasaka M,Aida M
    Interactions of CUP-SHAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thaliana.
    Plant Cell Physiol., 2012. 53(6): p. 1134-43
  63. Huang T,L
    RBE controls microRNA164 expression to effect floral organogenesis.
    Development, 2012. 139(12): p. 2161-9
  64. Lee S,Park CM
    Regulation of reactive oxygen species generation under drought conditions in Arabidopsis.
    Plant Signal Behav, 2012. 7(6): p. 599-601
  65. Engelhorn J, et al.
    Development-related PcG target in the apex 4 controls leaf margin architecture in Arabidopsis thaliana.
    Development, 2012. 139(14): p. 2566-75
  66. Larsson E,Sundstr
    Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons.
    Ann. Bot., 2012. 110(4): p. 923-34
  67. Lie C,Kelsom C,Wu X
    WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis.
    Plant J., 2012. 72(4): p. 674-82
  68. Wang Z, et al.
    Multiple components are integrated to determine leaf complexity in Lotus japonicus.
    J Integr Plant Biol, 2013. 55(5): p. 419-33
  69. Singh AK,Sharma V,Pal AK,Acharya V,Ahuja PS
    Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).
    DNA Res., 2013. 20(4): p. 403-23
  70. Pei H, et al.
    An NAC transcription factor controls ethylene-regulated cell expansion in flower petals.
    Plant Physiol., 2013. 163(2): p. 775-91
  71. Galbiati F, et al.
    An integrative model of the control of ovule primordia formation.
    Plant J., 2013. 76(3): p. 446-55
  72. Wang YX
    Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress.
    Mol. Biol. Rep., 2013. 40(11): p. 6451-8
  73. Pahari S, et al.
    Arabidopsis UNHINGED encodes a VPS51 homolog and reveals a role for the GARP complex in leaf shape and vein patterning.
    Development, 2014. 141(9): p. 1894-905
  74. Kamiuchi Y,Yamamoto K,Furutani M,Tasaka M,Aida M
    The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development.
    Front Plant Sci, 2014. 5: p. 165
  75. Mar
    Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners.
    Plant Physiol., 2014. 166(2): p. 1022-32
  76. Burian A, et al.
    The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis.
    Ann. Bot., 2015. 115(5): p. 807-20
  77. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  78. Lee BH,Jeon JO,Lee MM,Kim JH
    Genetic interaction between GROWTH-REGULATING FACTOR and CUP-SHAPED COTYLEDON in organ separation.
    Plant Signal Behav, 2015. 10(2): p. e988071
  79. Kareem A, et al.
    PLETHORA Genes Control Regeneration by a Two-Step Mechanism.
    Curr. Biol., 2015. 25(8): p. 1017-30
  80. Gonçalves B, et al.
    A conserved role for CUP-SHAPED COTYLEDON genes during ovule development.
    Plant J., 2015. 83(4): p. 732-42
  81. Du Q,Wang H
    The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation.
    Plant Signal Behav, 2015. 10(10): p. e1078955
  82. Vialette-Guiraud AC, et al.
    A Conserved Role for the NAM/miR164 Developmental Module Reveals a Common Mechanism Underlying Carpel Margin Fusion in Monocarpous and Syncarpous Eurosids.
    Front Plant Sci, 2015. 6: p. 1239
  83. Cui X, et al.
    REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis.
    Nat. Genet., 2016. 48(6): p. 694-9
  84. Blein T,Pautot V,Laufs P
    Combinations of Mutations Sufficient to Alter Arabidopsis Leaf Dissection.
    Plants (Basel), 2013. 2(2): p. 230-47
  85. Biot E, et al.
    Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis.
    Development, 2016. 143(18): p. 3417-28
  86. Zheng M, et al.
    Chloroplast Translation Initiation Factors Regulate Leaf Variegation and Development.
    Plant Physiol., 2016. 172(2): p. 1117-1130
  87. Balkunde R,Kitagawa M,Xu XM,Wang J,Jackson D
    SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ boundaries in Arabidopsis.
    Plant J., 2017. 90(3): p. 435-446
  88. Koyama T,Sato F,Ohme-Takagi M
    Roles of miR319 and TCP Transcription Factors in Leaf Development.
    Plant Physiol., 2017. 175(2): p. 874-885
  89. González-Carranza ZH, et al.
    HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression.
    PLoS ONE, 2017. 12(9): p. e0185106
  90. Wilson-Sánchez D,Martínez-López S,Navarro-Cartagena S,Jover-Gil S,Micol JL
    Members of the DEAL subfamily of the DUF1218 gene family are required for bilateral symmetry but not for dorsoventrality in Arabidopsis leaves.
    New Phytol., 2018. 217(3): p. 1307-1321
  91. Gonçalves B, et al.
    GDP-L-fucose is required for boundary definition in plants.
    J. Exp. Bot., 2017. 68(21-22): p. 5801-5811
  92. Sha S, et al.
    To be serrate or pinnate: diverse leaf forms of yarrows (Achillea) are linked to differential expression patterns of NAM genes.
    Ann. Bot., 2018. 121(2): p. 255-266
  93. Maugarny-Calès A, et al.
    Dissecting the pathways coordinating patterning and growth by plant boundary domains.
    PLoS Genet., 2019. 15(1): p. e1007913
  94. Aida M,Ishida T,Fukaki H,Fujisawa H,Tasaka M
    Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant.
    Plant Cell, 1997. 9(6): p. 841-57