PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G20730.3
Common NameARF7, BIP, IAA21, IAA23, IAA25, MSG1, NPH4, TIR5
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ARF
Protein Properties Length: 1150aa    MW: 127440 Da    PI: 6.9605
Description ARF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G20730.3genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1B372.45.5e-23127228199
                  EEEE-..-HHHHTT-EE--HHH.HTT......---..--SEEEEEETTS-EEEEEE..EEETTEEEE-TTHHHHHHHHT--TT-EEEEEE-SSSEE.. CS
           B3   1 ffkvltpsdvlksgrlvlpkkfaeeh......ggkkeesktltledesgrsWevkliyrkksgryvltkGWkeFvkangLkegDfvvFkldgrsefel 92 
                  f+k+lt sd++++g +++p++ ae++      +++++++ +l+ +d + ++W++++iyr++++r++lt+GW+ Fv+ ++L +gD+v+F +  + +++l
  AT5G20730.3 127 FCKTLTASDTSTHGGFSVPRRAAEKIfpaldfSMQPPCQ-ELVAKDIHDNTWTFRHIYRGQPKRHLLTTGWSVFVSTKRLFAGDSVLFIR--DGKAQL 221
                  99*****************************98888885.9************************************************5..467888 PP

                  EEEEE-S CS
           B3  93 vvkvfrk 99 
                  +++++r+
  AT5G20730.3 222 LLGIRRA 228
                  9999997 PP

2Auxin_resp111.49e-37253336183
   Auxin_resp   1 aahaastksvFevvYnPr.astseFvvkvekvekalkvkvsvGmRfkmafetedsserrlsGtvvgvsdldpvrWpnSkWrsLk 83 
                  aaha +++s+F+++YnPr a+++eFvv+++k+ ka++ +vs+GmRf+m fete++  rr++Gtv+g+sdldpvrW+nS+Wr+L+
  AT5G20730.3 253 AAHANANNSPFTIFYNPRwAAPAEFVVPLAKYTKAMYAQVSLGMRFRMIFETEECGVRRYMGTVTGISDLDPVRWKNSQWRNLQ 336
                  799**************846789***********************************************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019361.44E-42117256IPR015300DNA-binding pseudobarrel domain
Gene3DG3DSA:2.40.330.101.4E-41121242IPR015300DNA-binding pseudobarrel domain
CDDcd100171.04E-19126227No hitNo description
PfamPF023623.1E-21127228IPR003340B3 DNA binding domain
PROSITE profilePS5086312.125127229IPR003340B3 DNA binding domain
SMARTSM010199.7E-23127229IPR003340B3 DNA binding domain
PfamPF065078.3E-32253336IPR010525Auxin response factor
PfamPF023091.7E-910361124IPR033389AUX/IAA domain
PROSITE profilePS5174526.95610381131IPR000270PB1 domain
SuperFamilySSF542771.03E-810511116No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009630Biological Processgravitropism
GO:0009638Biological Processphototropism
GO:0009723Biological Processresponse to ethylene
GO:0009733Biological Processresponse to auxin
GO:0009734Biological Processauxin-activated signaling pathway
GO:0009785Biological Processblue light signaling pathway
GO:0010311Biological Processlateral root formation
GO:0040008Biological Processregulation of growth
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0048366Biological Processleaf development
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000016anatomylateral root primordium
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009015anatomyportion of vascular tissue
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 1150 aa     Download sequence    Send to blast
MKAPSSNGVS PNPVEGERRN INSELWHACA GPLISLPPAG SLVVYFPQGH SEQVAASMQK  60
QTDFIPSYPN LPSKLICMLH NVTLNADPET DEVYAQMTLQ PVNKYDRDAL LASDMGLKLN  120
RQPNEFFCKT LTASDTSTHG GFSVPRRAAE KIFPALDFSM QPPCQELVAK DIHDNTWTFR  180
HIYRGQPKRH LLTTGWSVFV STKRLFAGDS VLFIRDGKAQ LLLGIRRANR QQPALSSSVI  240
SSDSMHIGVL AAAAHANANN SPFTIFYNPR WAAPAEFVVP LAKYTKAMYA QVSLGMRFRM  300
IFETEECGVR RYMGTVTGIS DLDPVRWKNS QWRNLQIGWD ESAAGDRPSR VSVWDIEPVL  360
TPFYICPPPF FRPRFSGQPG MPDDETDMES ALKRAMPWLD NSLEMKDPSS TIFPGLSLVQ  420
WMNMQQQNGQ LPSAAAQPGF FPSMLSPTAA LHNNLGGTDD PSKLLSFQTP HGGISSSNLQ  480
FNKQNQQAPM SQLPQPPTTL SQQQQLQQLL HSSLNHQQQQ SQSQQQQQQQ QLLQQQQQLQ  540
SQQHSNNNQS QSQQQQQLLQ QQQQQQLQQQ HQQPLQQQTQ QQQLRTQPLQ SHSHPQPQQL  600
QQHKLQQLQV PQNQLYNGQQ AAQQHQSQQA STHHLQPQLV SGSMASSVIT PPSSSLNQSF  660
QQQQQQSKQL QQAHHHLGAS TSQSSVIETS KSSSNLMSAP PQETQFSRQV EQQQPPGLNG  720
QNQQTLLQQK AHQAQAQQIF QQSLLEQPHI QFQLLQRLQQ QQQQQFLSPQ SQLPHHQLQS  780
QQLQQLPTLS QGHQFPSSCT NNGLSTLQPP QMLVSRPQEK QNPPVGGGVK AYSGITDGGD  840
APSSSTSPST NNCQISSSGF LNRSQSGPAI LIPDAAIDMS GNLVQDLYSK SDMRLKQELV  900
GQQKSKASLT DHQLEASASG TSYGLDGGEN NRQQNFLAPT FGLDGDSRNS LLGGANVDNG  960
FVPDTLLSRG YDSQKDLQNM LSNYGGVTND IGTEMSTSAV RTQSFGVPNV PAISNDLAVN  1020
DAGVLGGGLW PAQTQRMRTY TKVQKRGSVG RSIDVNRYRG YDELRHDLAR MFGIEGQLED  1080
PQTSDWKLVY VDHENDILLV GDDPWEEFVN CVQSIKILSS AEVQQMSLDG NFAGVPVTNQ  1140
ACSGATSFNR
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ldu_A1e-1672135751388Auxin response factor 5
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.596450.0seed
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO41032420.0
Genevisible245971_at0.0
Expression AtlasAT5G20730-
AtGenExpressAT5G20730-
ATTED-IIAT5G20730-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in the whole plant. {ECO:0000269|PubMed:10476078}.
Functional Description ? help Back to Top
Source Description
TAIREncodes an auxin-regulated transcriptional activator. Activates expression of IAA1 and IAA9 in the presence of auxin. Mutants affect blue light and gravitropic and auxin mediated growth responses. Together with AUX19, it is involved in the response to ethylene. In the arf7 arf19 double mutant, several auxin-responsive genes (e.g. IAA5, LBD16, LBD29 and LBD33) are no longer upregulated by auxin.
UniProtAuxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LBD29. Functionally redundant with ARF19. Mediates embryo axis formation and vascular tissues differentiation. Functionally redundant with ARF5. {ECO:0000269|PubMed:12036261, ECO:0000269|PubMed:14973283, ECO:0000269|PubMed:16371470, ECO:0000269|PubMed:16461383, ECO:0000269|PubMed:17259263}.
Function -- GeneRIF ? help Back to Top
  1. ARF7 plays a major role in regulating expression of a subset of auxin response genes in leaf mesophyll cells.
    [PMID: 15923351]
  2. Mutations in ARF19 have little effect on their own, but in combination with mutations in NPH4/ARF7, encoding the most closely related ARF, they cause several phenotypes.
    [PMID: 15960621]
  3. ARF7 acts to regulate the auxin-mediated transcription of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and/or LBD29/ASL16 in roots.
    [PMID: 17259263]
  4. Reduced upregulation of glycolipid synthase and phospholipase genes in these mutants under Pi-deficient conditions indicates that IAA14 and ARF7/19 affect membrane lipid remodeling at the level of transcription.
    [PMID: 20043234]
  5. Mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype.
    [PMID: 22238449]
  6. Brassinosteroids employs auxin signaling components IAA19 and ARF7 to modulate the specific downstream processes.
    [PMID: 23125315]
  7. Data indicate that PIF4 and PIF5 negatively regulate auxin signaling. that PIF4 and PIF5 negatively modulate auxin-mediated phototropism through directly activating IAA19 and IAA29, which physically interact with auxin factor7 (ARF7).
    [PMID: 23757399]
  8. Data indicate that CARBON-METABOLISM INVOLVED (GNC) and GNC-LIKE (GNL)/CYTOKININ-RESPONSIVE GATA FACTOR1 (CGA1) expression is repressed by AUXIN RESPONSE FACTO ARF2 and ARF7.
    [PMID: 23878229]
  9. phosphorylation of ARF7 and ARF19 by BRASSINOSTEROID-insensitive2 (BIN2) can also potentiate auxin signalling output during lateral root organogenesis.
    [PMID: 24362628]
  10. the thermodynamic and structural basis for Arabidopsis thaliana ARF7 PB1 domain self-interaction.
    [PMID: 25839233]
  11. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia.
    [PMID: 25944102]
  12. ARF7 and FLP transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation.
    [PMID: 26578065]
  13. Transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 mutants showed down-regulated expression of PHOSPHATE STARVATION RESPONSE1 (PHR1) and downstream Pi starvation-induced genes in roots.
    [PMID: 30026290]
  14. Epistatic interaction of NPH4 and IAR2 genes in Arabidopsis roots has been reported.
    [PMID: 30484609]
  15. hydropatterning is dependent on auxin response factor ARF7
    [PMID: 30573626]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT5G20730.3
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G04240(A), AT1G19220(A), AT2G42430(A), AT2G45420(A), AT3G15540(A), AT3G20840(A), AT3G50340(A), AT3G58190(A), AT4G14550(R), AT4G14560(A), AT4G27260(A), AT4G37390(A), AT4G37650(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDauxin, ethylene
Interaction ? help Back to Top
Source Intact With
BioGRIDAT5G20730, AT1G19850, AT1G35240
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G20730
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF0421950.0AF042195.1 Arabidopsis thaliana auxin response factor 7 (ARF7) mRNA, complete cds.
GenBankAY6697890.0AY669789.1 Arabidopsis thaliana clone C105344 ARF7 (At5g20730) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_568400.20.0Transcriptional factor B3 family protein / auxin-responsive factor AUX/IAA-like protein
SwissprotP930220.0ARFG_ARATH; Auxin response factor 7
TrEMBLF4K5M50.0F4K5M5_ARATH; Auxin response factor
STRINGAT5G20730.10.0(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Ulmasov T,Hagen G,Guilfoyle TJ
    Activation and repression of transcription by auxin-response factors.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(10): p. 5844-9
    [PMID:10318972]
  2. Lascève G, et al.
    Arabidopsis contains at least four independent blue-light-activated signal transduction pathways.
    Plant Physiol., 1999. 120(2): p. 605-14
    [PMID:10364413]
  3. Harper RM, et al.
    The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue.
    Plant Cell, 2000. 12(5): p. 757-70
    [PMID:10810148]
  4. Stepanova AN,Ecker JR
    Ethylene signaling: from mutants to molecules.
    Curr. Opin. Plant Biol., 2000. 3(5): p. 353-60
    [PMID:11019801]
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  6. Stowe-Evans EL,Luesse DR,Liscum E
    The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness.
    Plant Physiol., 2001. 126(2): p. 826-34
    [PMID:11402210]
  7. M
    Brassinosteroid-regulated gene expression.
    Plant Physiol., 2002. 129(3): p. 1241-51
    [PMID:12114578]
  8. Folta KM,Kaufman LS
    Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization.
    Plant Mol. Biol., 2003. 51(4): p. 609-18
    [PMID:12650626]
  9. Tatematsu K, et al.
    MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana.
    Plant Cell, 2004. 16(2): p. 379-93
    [PMID:14729917]
  10. Takase T, et al.
    ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation.
    Plant J., 2004. 37(4): p. 471-83
    [PMID:14756757]
  11. Hardtke CS, et al.
    Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4.
    Development, 2004. 131(5): p. 1089-100
    [PMID:14973283]
  12. Okushima Y, et al.
    Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19.
    Plant Cell, 2005. 17(2): p. 444-63
    [PMID:15659631]
  13. Weijers D, et al.
    Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators.
    EMBO J., 2005. 24(10): p. 1874-85
    [PMID:15889151]
  14. Wang S,Tiwari SB,Hagen G,Guilfoyle TJ
    AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts.
    Plant Cell, 2005. 17(7): p. 1979-93
    [PMID:15923351]
  15. Wilmoth JC, et al.
    NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation.
    Plant J., 2005. 43(1): p. 118-30
    [PMID:15960621]
  16. Wang JW, et al.
    Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis.
    Plant Cell, 2005. 17(8): p. 2204-16
    [PMID:16006581]
  17. Ellis CM, et al.
    AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana.
    Development, 2005. 132(20): p. 4563-74
    [PMID:16176952]
  18. Fukaki H,Nakao Y,Okushima Y,Theologis A,Tasaka M
    Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.
    Plant J., 2005. 44(3): p. 382-95
    [PMID:16236149]
  19. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  20. Esmon CA, et al.
    A gradient of auxin and auxin-dependent transcription precedes tropic growth responses.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(1): p. 236-41
    [PMID:16371470]
  21. Li J,Dai X,Zhao Y
    A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis.
    Plant Physiol., 2006. 140(3): p. 899-908
    [PMID:16461383]
  22. Dreher KA,Brown J,Saw RE,Callis J
    The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness.
    Plant Cell, 2006. 18(3): p. 699-714
    [PMID:16489122]
  23. Nakamoto D,Ikeura A,Asami T,Yamamoto KT
    Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the arabidopsis mutant nonphototropic hypocotyl 4.
    Plant Physiol., 2006. 141(2): p. 456-64
    [PMID:16632588]
  24. Muto H, et al.
    Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of arabidopsis expressed in HeLa cells.
    Plant Cell Physiol., 2006. 47(8): p. 1095-101
    [PMID:16854942]
  25. Fukaki H,Taniguchi N,Tasaka M
    PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation.
    Plant J., 2006. 48(3): p. 380-9
    [PMID:17010112]
  26. Okushima Y,Fukaki H,Onoda M,Theologis A,Tasaka M
    ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis.
    Plant Cell, 2007. 19(1): p. 118-30
    [PMID:17259263]
  27. Shin R, et al.
    The Arabidopsis transcription factor MYB77 modulates auxin signal transduction.
    Plant Cell, 2007. 19(8): p. 2440-53
    [PMID:17675404]
  28. Cheng Y,Qin G,Dai X,Zhao Y
    NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(47): p. 18825-9
    [PMID:18000043]
  29. Ivanchenko MG,Muday GK,Dubrovsky JG
    Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.
    Plant J., 2008. 55(2): p. 335-47
    [PMID:18435826]
  30. Uehara T,Okushima Y,Mimura T,Tasaka M,Fukaki H
    Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana.
    Plant Cell Physiol., 2008. 49(7): p. 1025-38
    [PMID:18505759]
  31. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
    [PMID:18650403]
  32. de Jong M,Wolters-Arts M,Feron R,Mariani C,Vriezen WH
    The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development.
    Plant J., 2009. 57(1): p. 160-70
    [PMID:18778404]
  33. Ditengou FA, et al.
    Mechanical induction of lateral root initiation in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(48): p. 18818-23
    [PMID:19033199]
  34. Pérez-Torres CA, et al.
    Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor.
    Plant Cell, 2008. 20(12): p. 3258-72
    [PMID:19106375]
  35. Lee DJ,Park JW,Lee HW,Kim J
    Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression.
    J. Exp. Bot., 2009. 60(13): p. 3935-57
    [PMID:19654206]
  36. Sato A,Yamamoto KT
    What's the physiological role of domain II-less Aux/IAA proteins?
    Plant Signal Behav, 2008. 3(7): p. 496-7
    [PMID:19704497]
  37. Lee HW,Kim NY,Lee DJ,Kim J
    LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1377-89
    [PMID:19717544]
  38. Stone BB, et al.
    Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.
    Mol Plant, 2008. 1(1): p. 129-44
    [PMID:20031920]
  39. Narise T, et al.
    Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation.
    Plant Mol. Biol., 2010. 72(4-5): p. 533-44
    [PMID:20043234]
  40. De Smet I, et al.
    Bimodular auxin response controls organogenesis in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(6): p. 2705-10
    [PMID:20133796]
  41. Ikeyama Y,Tasaka M,Fukaki H
    RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana.
    Plant J., 2010. 62(5): p. 865-75
    [PMID:20230485]
  42. Hanada K, et al.
    Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana.
    Mol. Biol. Evol., 2011. 28(1): p. 377-82
    [PMID:20736450]
  43. Varaud E, et al.
    AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp.
    Plant Cell, 2011. 23(3): p. 973-83
    [PMID:21421811]
  44. Ortiz-Castro R, et al.
    Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(17): p. 7253-8
    [PMID:21482761]
  45. Vernoux T, et al.
    The auxin signalling network translates dynamic input into robust patterning at the shoot apex.
    Mol. Syst. Biol., 2011. 7: p. 508
    [PMID:21734647]
  46. Robles LM,Deslauriers SD,Alvarez AA,Larsen PB
    A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis.
    J. Exp. Bot., 2012. 63(5): p. 2231-41
    [PMID:22238449]
  47. Goh T,Joi S,Mimura T,Fukaki H
    The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins.
    Development, 2012. 139(5): p. 883-93
    [PMID:22278921]
  48. Grunewald W, et al.
    Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1554-9
    [PMID:22307611]
  49. Feng Z,Sun X,Wang G,Liu H,Zhu J
    LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana.
    Ann. Bot., 2012. 110(1): p. 1-10
    [PMID:22334497]
  50. Raya-Gonz
    The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana.
    J. Plant Physiol., 2012. 169(14): p. 1348-58
    [PMID:22658222]
  51. Feng Z,Zhu J,Du X,Cui X
    Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana.
    Planta, 2012. 236(4): p. 1227-37
    [PMID:22699776]
  52. Arase F, et al.
    IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis.
    PLoS ONE, 2012. 7(8): p. e43414
    [PMID:22912871]
  53. Zhou XY,Song L,Xue HW
    Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7.
    Mol Plant, 2013. 6(3): p. 887-904
    [PMID:23125315]
  54. Guo X,Lu W,Ma Y,Qin Q,Hou S
    The BIG gene is required for auxin-mediated organ growth in Arabidopsis.
    Planta, 2013. 237(4): p. 1135-47
    [PMID:23288076]
  55. Kim J,Lee HW
    Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis.
    Plant Signal Behav, 2013. 8(2): p. e22979
    [PMID:23299420]
  56. Wang J,Yan DW,Yuan TT,Gao X,Lu YT
    A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level.
    Plant Mol. Biol., 2013. 82(1-2): p. 71-83
    [PMID:23483289]
  57. Hofhuis H, et al.
    Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors.
    Curr. Biol., 2013. 23(11): p. 956-62
    [PMID:23684976]
  58. Kang NY,Lee HW,Kim J
    The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis.
    Plant Cell Physiol., 2013. 54(8): p. 1326-34
    [PMID:23749813]
  59. Sun J,Qi L,Li Y,Zhai Q,Li C
    PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis.
    Plant Cell, 2013. 25(6): p. 2102-14
    [PMID:23757399]
  60. Richter R,Behringer C,Zourelidou M,Schwechheimer C
    Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(32): p. 13192-7
    [PMID:23878229]
  61. Cho H, et al.
    A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development.
    Nat. Cell Biol., 2014. 16(1): p. 66-76
    [PMID:24362628]
  62. Hu J,Zhang Y,Wang J,Zhou Y
    Glycerol affects root development through regulation of multiple pathways in Arabidopsis.
    PLoS ONE, 2014. 9(1): p. e86269
    [PMID:24465999]
  63. Korasick DA, et al.
    Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(14): p. 5427-32
    [PMID:24706860]
  64. Mellor N, et al.
    Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis.
    J. Theor. Biol., 2015. 366: p. 57-70
    [PMID:25446711]
  65. Piya S,Shrestha SK,Binder B,Stewart CN,Hewezi T
    Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis.
    Front Plant Sci, 2014. 5: p. 744
    [PMID:25566309]
  66. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  67. Gupta A,Singh M,Laxmi A
    Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis.
    Plant Physiol., 2015. 168(1): p. 307-20
    [PMID:25810094]
  68. Korasick DA, et al.
    Defining a two-pronged structural model for PB1 (Phox/Bem1p) domain interaction in plant auxin responses.
    J. Biol. Chem., 2015. 290(20): p. 12868-78
    [PMID:25839233]
  69. Lavenus J, et al.
    Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones.
    Plant Cell, 2015. 27(5): p. 1368-88
    [PMID:25944102]
  70. Chen Q, et al.
    A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development.
    Nat Commun, 2015. 6: p. 8821
    [PMID:26578065]
  71. Youn JH, et al.
    ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana.
    Phytochemistry, 2016. 122: p. 34-44
    [PMID:26608667]
  72. Porco S, et al.
    Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.
    Development, 2016. 143(18): p. 3340-9
    [PMID:27578783]
  73. Carey NS,Krogan NT
    The role of AUXIN RESPONSE FACTORs in the development and differential growth of inflorescence stems.
    Plant Signal Behav, 2017. 12(4): p. e1307492
    [PMID:28340328]
  74. Olmo R, et al.
    Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?
    Front Plant Sci, 2017. 8: p. 875
    [PMID:28603536]
  75. Sheng L, et al.
    Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture.
    Development, 2017. 144(17): p. 3126-3133
    [PMID:28743799]
  76. Lee K,Seo PJ
    High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis.
    Planta, 2017. 246(4): p. 797-802
    [PMID:28766014]
  77. Ayala-Rodríguez JÁ,Barrera-Ortiz S,Ruiz-Herrera LF,López-Bucio J
    Folic acid orchestrates root development linking cell elongation with auxin response and acts independently of the TARGET OF RAPAMYCIN signaling in Arabidopsis thaliana.
    Plant Sci., 2017. 264: p. 168-178
    [PMID:28969797]
  78. Nakamura M, et al.
    Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells.
    Plant Physiol., 2018. 176(1): p. 378-391
    [PMID:29084900]
  79. Hong L, et al.
    Alternative polyadenylation is involved in auxin-based plant growth and development.
    Plant J., 2018. 93(2): p. 246-258
    [PMID:29155478]
  80. Lee K,Park OS,Seo PJ
    Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation.
    Sci Signal, 2018.
    [PMID:29184030]
  81. Prát T, et al.
    WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity.
    PLoS Genet., 2018. 14(1): p. e1007177
    [PMID:29377885]
  82. Kimura T, et al.
    Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis.
    Plant Cell Physiol., 2018. 59(4): p. 823-835
    [PMID:29401292]
  83. Schoenaers S, et al.
    The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth.
    Curr. Biol., 2018. 28(5): p. 722-732.e6
    [PMID:29478854]
  84. Huang KL, et al.
    The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots.
    Plant Physiol., 2018. 178(1): p. 413-427
    [PMID:30026290]
  85. Hablak SG
    Features inheritance of root system Arabidopsis thaliana (L.) Heynh. the interaction of genes CTR1 AND ALF3, NPH4 and IAR2.
    Tsitol. Genet., 2019.
    [PMID:30484609]
  86. Orosa-Puente B, et al.
    Root branching toward water involves posttranslational modification of transcription factor ARF7.
    Science, 2018. 362(6421): p. 1407-1410
    [PMID:30573626]
  87. Liscum E,Briggs WR
    Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli.
    Plant Cell, 1995. 7(4): p. 473-85
    [PMID:7773019]
  88. Liscum E,Briggs WR
    Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway.
    Plant Physiol., 1996. 112(1): p. 291-6
    [PMID:8819327]
  89. Ruegger M, et al.
    Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects.
    Plant Cell, 1997. 9(5): p. 745-57
    [PMID:9165751]
  90. Kim J,Harter K,Theologis A
    Protein-protein interactions among the Aux/IAA proteins.
    Proc. Natl. Acad. Sci. U.S.A., 1997. 94(22): p. 11786-91
    [PMID:9342315]
  91. Watahiki MK,Yamamoto KT
    The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf.
    Plant Physiol., 1997. 115(2): p. 419-26
    [PMID:9342863]
  92. Stowe-Evans EL,Harper RM,Motchoulski AV,Liscum E
    NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis.
    Plant Physiol., 1998. 118(4): p. 1265-75
    [PMID:9847100]
  93. Watahiki MK,Tatematsu K,Fujihira K,Yamamoto M,Yamamoto KT
    The MSG1 and AXR1 genes of Arabidopsis are likely to act independently in growth-curvature responses of hypocotyls.
    Planta, 1999. 207(3): p. 362-9
    [PMID:9951732]