PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G06950.2
Common NameAHBP-1B, BZIP20, HBP1B, MOJ9.12, TGA2
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bZIP
Protein Properties Length: 330aa    MW: 36684.3 Da    PI: 9.0124
Description bZIP family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G06950.2genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1bZIP_130.76.6e-104586445
                 XCHHHCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CS
       bZIP_1  4 lkrerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaL 45
                  k  rr+++NReAAr+sR+RKka++++Le+   +L++  ++L
  AT5G06950.2 45 QKTLRRLAQNREAARKSRLRKKAYVQQLENSRLKLTQLEQEL 86
                 5888*************************9877777766555 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:1.20.5.1706.1E-83989No hitNo description
SMARTSM003383.4E-842105IPR004827Basic-leucine zipper domain
PROSITE profilePS502179.4384488IPR004827Basic-leucine zipper domain
PfamPF001706.4E-74686IPR004827Basic-leucine zipper domain
SuperFamilySSF579594.94E-74689No hitNo description
PROSITE patternPS0003604964IPR004827Basic-leucine zipper domain
PfamPF141441.3E-34128203IPR025422Transcription factor TGA like domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009410Biological Processresponse to xenobiotic stimulus
GO:0009626Biological Processplant-type hypersensitive response
GO:0009862Biological Processsystemic acquired resistance, salicylic acid mediated signaling pathway
GO:0045892Biological Processnegative regulation of transcription, DNA-templated
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0005737Cellular Componentcytoplasm
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000084anatomyplant sperm cell
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009001anatomyfruit
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 330 aa     Download sequence    Send to blast
MADTSPRTDV STDDDTDHPD LGSEGALVNT AASDSSDRSK GKMDQKTLRR LAQNREAARK  60
SRLRKKAYVQ QLENSRLKLT QLEQELQRAR QQGVFISGTG DQAHSTGGNG ALAFDAEHSR  120
WLEEKNKQMN ELRSALNAHA GDSELRIIVD GVMAHYEELF RIKSNAAKND VFHLLSGMWK  180
TPAERCFLWL GGFRSSELLK LLANQLEPMT ERQLMGINNL QQTSQQAEDA LSQGMESLQQ  240
SLADTLSSGT LGSSSSGNVA SYMGQMAMAM GKLGTLEGFI RQADNLRLQT LQQMIRVLTT  300
RQSARALLAI HDYFSRLRAL SSLWLARPRE
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.238840.0flower
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible250671_at0.0
Expression AtlasAT5G06950-
AtGenExpressAT5G06950-
ATTED-IIAT5G06950-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in the whole plant.
Functional Description ? help Back to Top
Source Description
TAIRTranscription factor of the B-ZIP family that has high affinity for C-box motifs. Interacts with NPR1 and may regulate PR gene expression. Phosphorylated by a CK2-like protein in vitro. Phosphorylation is enhanced by salicylic acid treatment.
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. Required to induce the systemic acquired resistance (SAR) via the regulation of pathogenesis-related genes expression. Binding to the as-1 element of PR-1 promoter is salicylic acid-inducible and mediated by NPR1. Could also bind to the C-boxes (5'-ATGACGTCAT-3') with high affinity. {ECO:0000269|PubMed:12897257}.
Function -- GeneRIF ? help Back to Top
  1. NPR1 may transiently interact with the DNA unbound fraction of TGA2 to promote its recruitment to an active form on cognate target promoters.
    [PMID: 18571510]
  2. data show TGA factors, which are essential for the salicylic acid (SA)-dependent establishment of systemic acquired resistance, play a pivotal role in the activation of the jasmonic acid/ethylene pathway, both after pathogen infection & hormone treatment
    [PMID: 19832945]
  3. We confirm that the NPR1 BTB/POZ domain interacts with and negates the molecular function of the TGA2 repression domain by excluding TGA2 oligomers from cognate DNA.
    [PMID: 19915088]
  4. TGA2-binding motif is directly involved in the modulation of salicylic acid-induced NIMIN-1 expression in Arabidopsis.
    [PMID: 20198573]
  5. TGA factors 2, 5, and 6 activate oxylipin-responsive gene expression but impede inhibition of root growth by oxylipins.
    [PMID: 23349138]
  6. AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in salicylic acid regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to soybean cyst nematode is enhanced.
    [PMID: 24739302]
  7. Our study showed that TGA1 and TGA4 regulate Pip and SA biosynthesis by modulating the expression of SARD1 and CBP60g.
    [PMID: 28898429]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00492DAP27203113Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT5G06950.2
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G14610(A), AT5G44420(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDsalicylic acid
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G07530
IntActSearch P43273
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G06950
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK1176860.0AK117686.1 Arabidopsis thaliana At5g06950 mRNA for putative bZip transcription factor AtbZip20/tga2, complete cds, clone: RAFL17-34-M19.
GenBankATHAHBP1B0.0D10042.1 Arabidopsis thaliana mRNA for AHBP-1b, complete cds.
GenBankBT0061340.0BT006134.1 Arabidopsis thaliana clone U50303 putative bZIP transcription factor, HBP-1b homolog (At5g06950) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001031845.10.0bZIP transcription factor family protein
RefseqNP_001078539.10.0bZIP transcription factor family protein
RefseqNP_001331392.10.0bZIP transcription factor family protein
RefseqNP_196312.10.0bZIP transcription factor family protein
RefseqNP_974744.10.0bZIP transcription factor family protein
SwissprotP432730.0TGA2_ARATH; Transcription factor TGA2
TrEMBLA0A384LQJ80.0A0A384LQJ8_ARATH; TGA2
TrEMBLB2BDR50.0B2BDR5_ARATH; BZIP transcription factor TGA2
STRINGAT5G06950.10.0(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Zhang Y,Fan W,Kinkema M,Li X,Dong X
    Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(11): p. 6523-8
    [PMID:10339621]
  2. Zhou JM, et al.
    NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid.
    Mol. Plant Microbe Interact., 2000. 13(2): p. 191-202
    [PMID:10659709]
  3. Després C,DeLong C,Glaze S,Liu E,Fobert PR
    The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors.
    Plant Cell, 2000. 12(2): p. 279-90
    [PMID:10662863]
  4. Niggeweg R,Thurow C,Weigel R,Pfitzner U,Gatz C
    Tobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding properties.
    Plant Mol. Biol., 2000. 42(5): p. 775-88
    [PMID:10809449]
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  6. Weigel RR,Bäuscher C,Pfitzner AJ,Pfitzner UM
    NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants.
    Plant Mol. Biol., 2001. 46(2): p. 143-60
    [PMID:11442055]
  7. Subramaniam R,Desveaux D,Spickler C,Michnick SW,Brisson N
    Direct visualization of protein interactions in plant cells.
    Nat. Biotechnol., 2001. 19(8): p. 769-72
    [PMID:11479572]
  8. Chern MS, et al.
    Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis.
    Plant J., 2001. 27(2): p. 101-13
    [PMID:11489188]
  9. Jakoby M, et al.
    bZIP transcription factors in Arabidopsis.
    Trends Plant Sci., 2002. 7(3): p. 106-11
    [PMID:11906833]
  10. Seki M, et al.
    Functional annotation of a full-length Arabidopsis cDNA collection.
    Science, 2002. 296(5565): p. 141-5
    [PMID:11910074]
  11. Fan W,Dong X
    In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis.
    Plant Cell, 2002. 14(6): p. 1377-89
    [PMID:12084833]
  12. Kim HS,Delaney TP
    Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica.
    Plant J., 2002. 32(2): p. 151-63
    [PMID:12383081]
  13. Spoel SH, et al.
    NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol.
    Plant Cell, 2003. 15(3): p. 760-70
    [PMID:12615947]
  14. Johnson C,Boden E,Arias J
    Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis.
    Plant Cell, 2003. 15(8): p. 1846-58
    [PMID:12897257]
  15. Després C, et al.
    The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1.
    Plant Cell, 2003. 15(9): p. 2181-91
    [PMID:12953119]
  16. Zhang Y,Tessaro MJ,Lassner M,Li X
    Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance.
    Plant Cell, 2003. 15(11): p. 2647-53
    [PMID:14576289]
  17. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  18. Kachroo A, et al.
    Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant.
    Plant Cell, 2003. 15(12): p. 2952-65
    [PMID:14615603]
  19. Kawata T, et al.
    A cDNA clone encoding HBP-1b homologue in Arabidopsis thaliana.
    Nucleic Acids Res., 1992. 20(5): p. 1141
    [PMID:1549479]
  20. Liu G,Holub EB,Alonso JM,Ecker JR,Fobert PR
    An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance.
    Plant J., 2005. 41(2): p. 304-18
    [PMID:15634206]
  21. Weigel RR,Pfitzner UM,Gatz C
    Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis.
    Plant Cell, 2005. 17(4): p. 1279-91
    [PMID:15749762]
  22. Hepworth SR,Zhang Y,McKim S,Li X,Haughn GW
    BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis.
    Plant Cell, 2005. 17(5): p. 1434-48
    [PMID:15805484]
  23. Kang HG,Klessig DF
    Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2.
    Plant Mol. Biol., 2005. 57(4): p. 541-57
    [PMID:15821979]
  24. Fitzgerald HA,Canlas PE,Chern MS,Ronald PC
    Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae.
    Plant J., 2005. 43(3): p. 335-47
    [PMID:16045470]
  25. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  26. Thibaud-Nissen F, et al.
    Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants.
    Plant J., 2006. 47(1): p. 152-62
    [PMID:16824183]
  27. Rama Devi S,Chen X,Oliver DJ,Xiang C
    A novel high-throughput genetic screen for stress-responsive mutants of Arabidopsis thaliana reveals new loci involving stress responses.
    Plant J., 2006. 47(4): p. 652-63
    [PMID:16856987]
  28. Zhang Y, et al.
    Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs.
    Plant J., 2006. 48(5): p. 647-56
    [PMID:17076807]
  29. Rochon A,Boyle P,Wignes T,Fobert PR,Després C
    The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines.
    Plant Cell, 2006. 18(12): p. 3670-85
    [PMID:17172357]
  30. Kesarwani M,Yoo J,Dong X
    Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis.
    Plant Physiol., 2007. 144(1): p. 336-46
    [PMID:17369431]
  31. Ndamukong I, et al.
    SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription.
    Plant J., 2007. 50(1): p. 128-39
    [PMID:17397508]
  32. Mueller S, et al.
    General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
    Plant Cell, 2008. 20(3): p. 768-85
    [PMID:18334669]
  33. Manzano C,Abraham Z,L
    Identification of ubiquitinated proteins in Arabidopsis.
    Plant Mol. Biol., 2008. 68(1-2): p. 145-58
    [PMID:18535787]
  34. Johnson C,Mhatre A,Arias J
    NPR1 preferentially binds to the DNA-inactive form of Arabidopsis TGA2.
    Biochim. Biophys. Acta, 2008. 1779(10): p. 583-9
    [PMID:18571510]
  35. Fode B,Siemsen T,Thurow C,Weigel R,Gatz C
    The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters.
    Plant Cell, 2008. 20(11): p. 3122-35
    [PMID:18984675]
  36. Li S, et al.
    Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana.
    Plant Cell, 2009. 21(2): p. 429-41
    [PMID:19218396]
  37. Spoel SH, et al.
    Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity.
    Cell, 2009. 137(5): p. 860-72
    [PMID:19490895]
  38. Jaspers P, et al.
    Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors.
    Plant J., 2009. 60(2): p. 268-79
    [PMID:19548978]
  39. Zander M,La Camera S,Lamotte O,Métraux JP,Gatz C
    Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses.
    Plant J., 2010. 61(2): p. 200-10
    [PMID:19832945]
  40. Boyle P, et al.
    The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function.
    Plant Cell, 2009. 21(11): p. 3700-13
    [PMID:19915088]
  41. Fonseca JP,Menossi M,Thibaud-Nissen F,Town CD
    Functional analysis of a TGA factor-binding site located in the promoter region controlling salicylic acid-induced NIMIN-1 expression in Arabidopsis.
    Genet. Mol. Res., 2010. 9(1): p. 167-75
    [PMID:20198573]
  42. Matthes MC, et al.
    The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence.
    Planta, 2010. 232(5): p. 1163-80
    [PMID:20711606]
  43. Murmu J, et al.
    Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development.
    Plant Physiol., 2010. 154(3): p. 1492-504
    [PMID:20805327]
  44. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
    [PMID:21798944]
  45. Zander M,Chen S,Imkampe J,Thurow C,Gatz C
    Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif.
    Mol Plant, 2012. 5(4): p. 831-40
    [PMID:22207719]
  46. Shi Z,Maximova S,Liu Y,Verica J,Guiltinan MJ
    The Salicylic Acid Receptor NPR3 Is a Negative Regulator of the Transcriptional Defense Response during Early Flower Development in Arabidopsis.
    Mol Plant, 2013. 6(3): p. 802-16
    [PMID:22986789]
  47. Canet JV,Dob
    The BLADE-ON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate.
    BMC Plant Biol., 2012. 12: p. 199
    [PMID:23116333]
  48. Stotz HU,Mueller S,Zoeller M,Mueller MJ,Berger S
    TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins.
    J. Exp. Bot., 2013. 64(4): p. 963-75
    [PMID:23349138]
  49. Paudel J,Copley T,Amirizian A,Prado A,Bede JC
    Arabidopsis redox status in response to caterpillar herbivory.
    Front Plant Sci, 2013. 4: p. 113
    [PMID:23653629]
  50. Matthews BF, et al.
    Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.
    BMC Plant Biol., 2014. 14: p. 96
    [PMID:24739302]
  51. Zander M,Thurow C,Gatz C
    TGA Transcription Factors Activate the Salicylic Acid-Suppressible Branch of the Ethylene-Induced Defense Program by Regulating ORA59 Expression.
    Plant Physiol., 2014. 165(4): p. 1671-1683
    [PMID:24989234]
  52. Stotz HU, et al.
    A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana.
    Plant Signal Behav, 2014. 9(10): p. e972794
    [PMID:25482810]
  53. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  54. Herrera-Vásquez A, et al.
    Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis.
    Plant Mol. Biol. Rep., 2018.
    [PMID:26696694]
  55. Huang LJ, et al.
    Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.
    BMC Plant Biol., 2016. 16(1): p. 200
    [PMID:27624344]
  56. Uhrig JF, et al.
    CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana.
    Biochim Biophys Acta Gene Regul Mech, 2017. 1860(2): p. 218-226
    [PMID:27838237]
  57. Sun T, et al.
    TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g).
    New Phytol., 2018. 217(1): p. 344-354
    [PMID:28898429]
  58. Lam E,Lam YK
    Binding site requirements and differential representation of TGF factors in nuclear ASF-1 activity.
    Nucleic Acids Res., 1995. 23(18): p. 3778-85
    [PMID:7479010]
  59. Miao ZH,Liu X,Lam E
    TGA3 is a distinct member of the TGA family of bZIP transcription factors in Arabidopsis thaliana.
    Plant Mol. Biol., 1994. 25(1): p. 1-11
    [PMID:8003690]
  60. de Pater S,Pham K,Memelink J,Kijne J
    Binding specificity and tissue-specific expression pattern of the Arabidopsis bZIP transcription factor TGA2.
    Mol. Gen. Genet., 1996. 250(2): p. 237-9
    [PMID:8628224]