PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G37650.1
Common NameF19F18.140, SGR7, SHR
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family GRAS
Protein Properties Length: 531aa    MW: 59462.2 Da    PI: 5.4655
Description GRAS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G37650.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1GRAS3926.5e-1201455293374
         GRAS   3 elLlecAeavssgdlelaqalLarlselaspdgdpmqRlaayfteALaarlarsvselykalppsetseknsseelaalkl..fsevsPilkfshlta 98 
                  ++Lle+A+a+s++d+++aq++L++l+el+sp+gd+ q+la+yf++AL +r+++s++++y+++ + +++ek+ s e +  ++  f+evsP+ +f+h++a
  AT4G37650.1 145 SVLLEAARAFSDKDTARAQQILWTLNELSSPYGDTEQKLASYFLQALFNRMTGSGERCYRTMVTAAATEKTCSFESTRKTVlkFQEVSPWATFGHVAA 242
                  78************************************************************999999988655544444468*************** PP

         GRAS  99 NqaIleavegeervHiiDfdisqGlQWpaLlqaLasRpegppslRiTgvgspesg......skeeleetgerLakfAeelgvpfefnvlvak.rledl 189
                  N aIleav+ge ++Hi+D++ + ++QWp+Ll+aLa+R++++p+lR+T+v+ ++++      s+++++e+g+r++kfA+ +gvpf+fn++++  +l+++
  AT4G37650.1 243 NGAILEAVDGEAKIHIVDISSTFCTQWPTLLEALATRSDDTPHLRLTTVVVANKFvndqtaSHRMMKEIGNRMEKFARLMGVPFKFNIIHHVgDLSEF 340
                  **************************************************999889999999**************************96666***** PP

         GRAS 190 eleeLrvkpgEalaVnlvlqlhrlldesvsleserdevLklvkslsPkvvvvveqeadh.nse......sFlerflealeyysalfdsleaklprese 280
                  +l+eL+vkp+E+la+n+v ++h +     s  s+rd+v++ +++l+P++v+vve+ead+ ++e      +Fl++f e+l+++ ++f+s+e+++pr+s+
  AT4G37650.1 341 DLNELDVKPDEVLAINCVGAMHGIA----SRGSPRDAVISSFRRLRPRIVTVVEEEADLvGEEeggfddEFLRGFGECLRWFRVCFESWEESFPRTSN 434
                  ************************8....8888999***********************7666899999***************************** PP

         GRAS 281 erikvErellgreivnvvacegaerrerhetlekWrerleeaGFkpvplsekaakqaklllrkvksdg..yrveeesgslv.lgWkdrpLvsvSaWr 374
                  er ++Er+  gr+iv++vace ++++er+et++kW++r++++GF++v +s+++a+++++llr++k +g   +v++ +++ + l+W+d+p+v++SaWr
  AT4G37650.1 435 ERLMLERA-AGRAIVDLVACEPSDSTERRETARKWSRRMRNSGFGAVGYSDEVADDVRALLRRYK-EGvwSMVQCPDAAGIfLCWRDQPVVWASAWR 529
                  ********.********************************************************.4444788877666555**************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5098552.266117507IPR005202Transcription factor GRAS
PfamPF035142.2E-117145529IPR005202Transcription factor GRAS
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0008356Biological Processasymmetric cell division
GO:0009956Biological Processradial pattern formation
GO:0032350Biological Processregulation of hormone metabolic process
GO:0045930Biological Processnegative regulation of mitotic cell cycle
GO:0048366Biological Processleaf development
GO:0055072Biological Processiron ion homeostasis
GO:0005634Cellular Componentnucleus
GO:0005769Cellular Componentearly endosome
GO:0005770Cellular Componentlate endosome
GO:0055037Cellular Componentrecycling endosome
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020124anatomyroot stele
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 531 aa     Download sequence    Send to blast
MDTLFRLVSL QQQQQSDSII TNQSSLSRTS TTTTGSPQTA YHYNFPQNDV VEECFNFFMD  60
EEDLSSSSSH HNHHNHNNPN TYYSPFTTPT QYHPATSSTP SSTAAAAALA SPYSSSGHHN  120
DPSAFSIPQT PPSFDFSANA KWADSVLLEA ARAFSDKDTA RAQQILWTLN ELSSPYGDTE  180
QKLASYFLQA LFNRMTGSGE RCYRTMVTAA ATEKTCSFES TRKTVLKFQE VSPWATFGHV  240
AANGAILEAV DGEAKIHIVD ISSTFCTQWP TLLEALATRS DDTPHLRLTT VVVANKFVND  300
QTASHRMMKE IGNRMEKFAR LMGVPFKFNI IHHVGDLSEF DLNELDVKPD EVLAINCVGA  360
MHGIASRGSP RDAVISSFRR LRPRIVTVVE EEADLVGEEE GGFDDEFLRG FGECLRWFRV  420
CFESWEESFP RTSNERLMLE RAAGRAIVDL VACEPSDSTE RRETARKWSR RMRNSGFGAV  480
GYSDEVADDV RALLRRYKEG VWSMVQCPDA AGIFLCWRDQ PVVWASAWRP T
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5b3g_B0.0595313475Protein SHORT-ROOT
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.28160.0bud| flower| root
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO306911900.0
Genevisible253056_at0.0
Expression AtlasAT4G37650-
AtGenExpressAT4G37650-
ATTED-IIAT4G37650-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed in the procambium during embryogenesis. {ECO:0000269|PubMed:10850497}.
UniprotTISSUE SPECIFICITY: Expressed in the stele and the quiescent center. Not detected in the ground tissue cell lineage. The SHR protein moves from the stele to a single layer of adjacent cells, where it enters the nucleus. {ECO:0000269|PubMed:10850497, ECO:0000269|PubMed:11565032, ECO:0000269|PubMed:15142972, ECO:0000269|PubMed:15314023}.
Functional Description ? help Back to Top
Source Description
TAIRInvolved in radial organization of the root and shoot axial organs. Essential for normal shoot gravitropism. The protein moves in a highly specific manner from the cells of the stele in which it is synthesized outward. Movement requires sequences within the GRAS and VHIID domains.
UniProtTranscription factor required for quiescent center cells specification and maintenance of surrounding stem cells, and for the asymmetric cell division involved in radial pattern formation in roots. Essential for both cell division and cell specification. Regulates the radial organization of the shoot axial organs and is required for normal shoot gravitropism. Directly controls the transcription of SCR, and when associated with SCR, of MGP, RLK, TRI, NUC and SCL3. {ECO:0000269|PubMed:10850497, ECO:0000269|PubMed:12569126, ECO:0000269|PubMed:15314023, ECO:0000269|PubMed:16640459, ECO:0000269|PubMed:17446396, ECO:0000269|PubMed:9670559}.
Function -- GeneRIF ? help Back to Top
  1. The role of SHORT-ROOT and SCARECROW proteins in the maturation of A. thaliana roots, including cell organization, is reported.
    [PMID: 15955927]
  2. Combined analysis of global expression profiles of A. thaliana after modulating SHR activity in order to identify the direct targets of SHR is reported.
    [PMID: 16640459]
  3. findings show that SCARECROW (SCR) blocks SHORTROOT (SHR) movement by sequestering it into the nucleus through protein-protein interaction and a safeguard mechanism that relies on a SHR/SCR-dependent positive feedback loop for SCR transcription
    [PMID: 17446396]
  4. SHR movement from the stele is required for proper patterning of the root. Multiple domains are required for SHR movement and for proper sub-cellular localization.
    [PMID: 19000160]
  5. SHR regulates the spatiotemporal activation of specific genes involved in cell division
    [PMID: 20596025]
  6. SHR plays a central role in the root vascular system to control patterning processes, possibly regulated by longitudinal and radial signals.
    [PMID: 20680487]
  7. SHR and SCR primarily function as general regulators of cell proliferation in leaves.
    [PMID: 20739610]
  8. SHR regulates a wide array of Arabidopsis root-related developmental processes.
    [PMID: 21030506]
  9. Congruence between SHR and ATHB8 expression domains persists under conditions of manipulated vein patterning, suggesting that inception of expression of SHR and ATHB8 identifies transition to a preprocambial cell state that presages vein formation.
    [PMID: 21128301]
  10. JKD directly regulates SCR and MGP expression in cooperation with SHR, SCR and MGP.
    [PMID: 21935722]
  11. One mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis.
    [PMID: 21951467]
  12. SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots.
    [PMID: 22194939]
  13. The results together suggest that SHR regulates vascular patterning, but not root apical meristematic activity, through cytokinin homeostasis.
    [PMID: 22476466]
  14. The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue.
    [PMID: 22826238]
  15. SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis.
    [PMID: 23072993]
  16. SHRUBBY (At5g24740) controls root growth downstream of gibberellic acid in part through the regulation of SHORT-ROOT and SCARECROW.
    [PMID: 23444357]
  17. Mutations in three GRAS family transcription factors, SHORT-ROOT (SHR), SCARECROW (SCR) and SCARECROW-LIKE 23 (SCL23), affect BS cell fate in Arabidopsis thaliana.
    [PMID: 24517883]
  18. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR.
    [PMID: 24798139]
  19. SHR can move from multiple different cell types in the root. Analysis of subcellular localization indicates that in the cytoplasm of root or leaf cells, SHR localizes to endosomes in a SIEL-dependent manner.
    [PMID: 25124761]
  20. all of the SHR proteins function as mobile signals
    [PMID: 25352666]
  21. Arabidopsis adventitious root formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1.
    [PMID: 25617411]
  22. our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.
    [PMID: 25730098]
  23. Data show that SCARECROW-LIKE23 (SCL23) is a mobile protein that controls movement of SHORT-ROOT (SHR) and acts redundantly with SCARCROW (SCR) to specify endodermal fate in the root meristem.
    [PMID: 26415082]
  24. Data indicate that SEUSS (SEU) gene has distinct genetic interactions with SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3) genes.
    [PMID: 26818732]
  25. results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots.
    [PMID: 27353361]
  26. SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions
    [PMID: 27432873]
  27. modeling, transcriptional reporters, and synthetic promoters support a mechanism whereby expression at the top of the SHORTROOT-SCARECROW cascade is established through opposing activities of activators and repressors
    [PMID: 27923776]
  28. In the crystal structures of the SHR-SCR binary and JACKDAW (JKD)/IDD10-SHR-SCR ternary complexes, each GRAS domain comprises one alpha/beta core subdomain with an alpha-helical cap that mediates heterodimerization by forming an intermolecular helix bundle.
    [PMID: 28211915]
  29. Arabidopsis thaliana SHORT ROOT protein SHR gene, rice OsSHR1 and OsSHR2, could complement the A. thaliana shr mutant.
    [PMID: 28263767]
  30. This study showed that INDETERMINATE DOMAIN PROTEIN (ID) binding sequences have a crucial role in the regulation of SCARECROW and SHORT-ROOT expression.[SHR]
    [PMID: 28324206]
  31. This study showed that INDETERMINATE DOMAIN PROTEIN binding sequences have a crucial role in the regulation of SCARECROW and SHORT-ROOT expression.
    [PMID: 28324206]
  32. interaction of KinG with SHR allows for the formation of stable movement complexes that facilitate the cell-to-cell transport of SHR.
    [PMID: 29122988]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT4G37650.1
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G19220 (R), AT4G32880 (A), AT5G20730 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G03840(A), AT1G50420(A), AT3G54220(A), AT5G03150(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT5G41920
IntActSearch Q9SZF7
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G37650
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF2337520.0AF233752.1 Arabidopsis thaliana short-root protein (shr) gene, complete cds.
GenBankAL0356050.0AL035605.1 Arabidopsis thaliana DNA chromosome 4, BAC clone F19F18 (ESSA project).
GenBankAL1615910.0AL161591.2 Arabidopsis thaliana DNA chromosome 4, contig fragment No. 87.
GenBankBT0330260.0BT033026.1 Arabidopsis thaliana unknown protein (At4g37650) mRNA, complete cds.
GenBankCP0026870.0CP002687.1 Arabidopsis thaliana chromosome 4 sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_195480.10.0GRAS family transcription factor
SwissprotQ9SZF70.0SHR_ARATH; Protein SHORT-ROOT
TrEMBLA0A178UYJ60.0A0A178UYJ6_ARATH; SHR
STRINGAT4G37650.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM61042547
Representative plantOGRP27551332
Publications ? help Back to Top
  1. Tasaka M,Kato T,Fukaki H
    The endodermis and shoot gravitropism
    Trends Plant Sci., 1999. 4(3): p. 103-7
    [PMID:10322541]
  2. Helariutta Y, et al.
    The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling.
    Cell, 2000. 101(5): p. 555-67
    [PMID:10850497]
  3. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  4. Sassa N,Matsushita Y,Nakamura T,Nyunoya H
    The molecular characterization and in situ expression pattern of pea SCARECROW gene.
    Plant Cell Physiol., 2001. 42(4): p. 385-94
    [PMID:11333309]
  5. Nakajima K,Sena G,Nawy T,Benfey PN
    Intercellular movement of the putative transcription factor SHR in root patterning.
    Nature, 2001. 413(6853): p. 307-11
    [PMID:11565032]
  6. Barton MK
    Giving meaning to movement.
    Cell, 2001. 107(2): p. 129-32
    [PMID:11672520]
  7. Kato T,Morita MT,Tasaka M
    Role of endodermal cell vacuoles in shoot gravitropism.
    J. Plant Growth Regul., 2002. 21(2): p. 113-9
    [PMID:12024223]
  8. Mylona P,Linstead P,Martienssen R,Dolan L
    SCHIZORIZA controls an asymmetric cell division and restricts epidermal identity in the Arabidopsis root.
    Development, 2002. 129(18): p. 4327-34
    [PMID:12183384]
  9. Sabatini S,Heidstra R,Wildwater M,Scheres B
    SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem.
    Genes Dev., 2003. 17(3): p. 354-8
    [PMID:12569126]
  10. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  11. J
    Growing up green: cellular basis of plant development.
    Mech. Dev., 2003. 120(11): p. 1395-406
    [PMID:14623445]
  12. Suzuki T, et al.
    A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristems.
    Plant J., 2004. 38(4): p. 673-84
    [PMID:15125773]
  13. Sena G,Jung JW,Benfey PN
    A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression.
    Development, 2004. 131(12): p. 2817-26
    [PMID:15142972]
  14. Heidstra R,Welch D,Scheres B
    Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division.
    Genes Dev., 2004. 18(16): p. 1964-9
    [PMID:15314023]
  15. Aida M, et al.
    The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche.
    Cell, 2004. 119(1): p. 109-20
    [PMID:15454085]
  16. Gallagher KL,Paquette AJ,Nakajima K,Benfey PN
    Mechanisms regulating SHORT-ROOT intercellular movement.
    Curr. Biol., 2004. 14(20): p. 1847-51
    [PMID:15498493]
  17. Montiel G,Gantet P,Jay-Allemand C,Breton C
    Transcription factor networks. Pathways to the knowledge of root development.
    Plant Physiol., 2004. 136(3): p. 3478-85
    [PMID:15542499]
  18. Paquette AJ,Benfey PN
    Maturation of the ground tissue of the root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT.
    Plant Physiol., 2005. 138(2): p. 636-40
    [PMID:15955927]
  19. Fukaki H,Nakao Y,Okushima Y,Theologis A,Tasaka M
    Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.
    Plant J., 2005. 44(3): p. 382-95
    [PMID:16236149]
  20. Kurata T, et al.
    Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation.
    Development, 2005. 132(24): p. 5387-98
    [PMID:16291794]
  21. Xu J, et al.
    A molecular framework for plant regeneration.
    Science, 2006. 311(5759): p. 385-8
    [PMID:16424342]
  22. Levesque MP, et al.
    Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis.
    PLoS Biol., 2006. 4(5): p. e143
    [PMID:16640459]
  23. Imin N,Nizamidin M,Wu T,Rolfe BG
    Factors involved in root formation in Medicago truncatula.
    J. Exp. Bot., 2007. 58(3): p. 439-51
    [PMID:17158109]
  24. Dello Ioio R, et al.
    Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation.
    Curr. Biol., 2007. 17(8): p. 678-82
    [PMID:17363254]
  25. Cui H, et al.
    An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants.
    Science, 2007. 316(5823): p. 421-5
    [PMID:17446396]
  26. Welch D, et al.
    Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action.
    Genes Dev., 2007. 21(17): p. 2196-204
    [PMID:17785527]
  27. Zentella R, et al.
    Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.
    Plant Cell, 2007. 19(10): p. 3037-57
    [PMID:17933900]
  28. Ten Hove CA,Heidstra R
    Who begets whom? Plant cell fate determination by asymmetric cell division.
    Curr. Opin. Plant Biol., 2008. 11(1): p. 34-41
    [PMID:18162432]
  29. Lee MH, et al.
    Large-scale analysis of the GRAS gene family in Arabidopsis thaliana.
    Plant Mol. Biol., 2008. 67(6): p. 659-70
    [PMID:18500650]
  30. Sol
    Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene.
    Tree Physiol., 2008. 28(11): p. 1629-39
    [PMID:18765368]
  31. Iyer-Pascuzzi AS,Benfey PN
    Transcriptional networks in root cell fate specification.
    Biochim. Biophys. Acta, 2009. 1789(4): p. 315-25
    [PMID:18973837]
  32. Gallagher KL,Benfey PN
    Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement.
    Plant J., 2009. 57(5): p. 785-97
    [PMID:19000160]
  33. Miyashima S,Hashimoto T,Nakajima K
    ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway.
    Plant Cell Physiol., 2009. 50(3): p. 626-34
    [PMID:19188262]
  34. Roschzttardtz H,Conéjéro G,Curie C,Mari S
    Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo.
    Plant Physiol., 2009. 151(3): p. 1329-38
    [PMID:19726572]
  35. Carlsbecker A, et al.
    Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.
    Nature, 2010. 465(7296): p. 316-21
    [PMID:20410882]
  36. Sozzani R, et al.
    Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth.
    Nature, 2010. 466(7302): p. 128-32
    [PMID:20596025]
  37. Yu NI, et al.
    Characterization of SHORT-ROOT function in the Arabidopsis root vascular system.
    Mol. Cells, 2010. 30(2): p. 113-9
    [PMID:20680487]
  38. Dhondt S, et al.
    SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle.
    Plant Physiol., 2010. 154(3): p. 1183-95
    [PMID:20739610]
  39. Lucas M, et al.
    Short-Root regulates primary, lateral, and adventitious root development in Arabidopsis.
    Plant Physiol., 2011. 155(1): p. 384-98
    [PMID:21030506]
  40. Zhou W, et al.
    Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche.
    Plant Cell, 2010. 22(11): p. 3692-709
    [PMID:21045165]
  41. Gardiner J,Donner TJ,Scarpella E
    Simultaneous activation of SHR and ATHB8 expression defines switch to preprocambial cell state in Arabidopsis leaf development.
    Dev. Dyn., 2011. 240(1): p. 261-70
    [PMID:21128301]
  42. Heo JO, et al.
    Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(5): p. 2166-71
    [PMID:21245304]
  43. Koizumi K,Wu S,MacRae-Crerar A,Gallagher KL
    An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor.
    Curr. Biol., 2011. 21(18): p. 1559-64
    [PMID:21924907]
  44. Ogasawara H,Kaimi R,Colasanti J,Kozaki A
    Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT.
    Plant Mol. Biol., 2011. 77(4-5): p. 489-99
    [PMID:21935722]
  45. Cui H, et al.
    Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis.
    Plant Physiol., 2011. 157(3): p. 1221-31
    [PMID:21951467]
  46. Wu S,Koizumi K,Macrae-Crerar A,Gallagher KL
    Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root.
    PLoS ONE, 2011. 6(11): p. e27536
    [PMID:22132108]
  47. Wang J, et al.
    Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis.
    PLoS ONE, 2011. 6(12): p. e28878
    [PMID:22194939]
  48. Furuta K,Lichtenberger R,Helariutta Y
    The role of mobile small RNA species during root growth and development.
    Curr. Opin. Cell Biol., 2012. 24(2): p. 211-6
    [PMID:22227227]
  49. Pauluzzi G, et al.
    Surfing along the root ground tissue gene network.
    Dev. Biol., 2012. 365(1): p. 14-22
    [PMID:22349629]
  50. Hao Y,Cui H
    SHORT-ROOT regulates vascular patterning, but not apical meristematic activity in the Arabidopsis root through cytokinin homeostasis.
    Plant Signal Behav, 2012. 7(3): p. 314-7
    [PMID:22476466]
  51. Cui H
    Killing two birds with one stone: transcriptional regulators coordinate development and stress responses in plants.
    Plant Signal Behav, 2012. 7(6): p. 701-3
    [PMID:22580500]
  52. Martinka M,Dolan L,Pernas M,Abe J,Lux A
    Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana.
    Ann. Bot., 2012. 110(2): p. 361-71
    [PMID:22645115]
  53. Koizumi K,Hayashi T,Wu S,Gallagher KL
    The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(32): p. 13010-5
    [PMID:22826238]
  54. Cruz-Ram
    A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division.
    Cell, 2012. 150(5): p. 1002-15
    [PMID:22921914]
  55. Koizumi K,Hayashi T,Gallagher KL
    SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis.
    Plant Signal Behav, 2012. 7(12): p. 1573-7
    [PMID:23072993]
  56. Wu S,Gallagher KL
    Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor.
    Plant J., 2013. 74(1): p. 148-59
    [PMID:23294290]
  57. Koizumi K,Gallagher KL
    Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning.
    Development, 2013. 140(6): p. 1292-300
    [PMID:23444357]
  58. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  59. Muraro D, et al.
    Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(2): p. 857-62
    [PMID:24381155]
  60. Tian H,Jia Y,Niu T,Yu Q,Ding Z
    The key players of the primary root growth and development also function in lateral roots in Arabidopsis.
    Plant Cell Rep., 2014. 33(5): p. 745-53
    [PMID:24504658]
  61. Cui H,Kong D,Liu X,Hao Y
    SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana.
    Plant J., 2014. 78(2): p. 319-27
    [PMID:24517883]
  62. Wang Z,Mao JL,Zhao YJ,Li CY,Xiang CB
    L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.
    J Integr Plant Biol, 2015. 57(2): p. 186-97
    [PMID:24798139]
  63. Gao X,Wang C,Cui H
    Identification of bundle sheath cell fate factors provides new tools for C3-to-C4 engineering.
    Plant Signal Behav, 2018.
    [PMID:24819776]
  64. Wu S,Gallagher KL
    The movement of the non-cell-autonomous transcription factor, SHORT-ROOT relies on the endomembrane system.
    Plant J., 2014. 80(3): p. 396-409
    [PMID:25124761]
  65. Wu S, et al.
    A plausible mechanism, based upon Short-Root movement, for regulating the number of cortex cell layers in roots.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(45): p. 16184-9
    [PMID:25352666]
  66. Della Rovere F, et al.
    Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in
    Ann. Bot., 2015. 115(4): p. 617-28
    [PMID:25617411]
  67. Sebastian J, et al.
    PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana.
    PLoS Genet., 2015. 11(3): p. e1004973
    [PMID:25730098]
  68. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  69. Ahrazem O, et al.
    Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.
    Plant Sci., 2015. 234: p. 60-73
    [PMID:25804810]
  70. Jia Y, et al.
    The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development.
    J. Exp. Bot., 2015. 66(15): p. 4631-42
    [PMID:25998905]
  71. Zhang M, et al.
    A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.
    Plant J., 2015. 83(4): p. 582-99
    [PMID:26072661]
  72. Long Y, et al.
    SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement.
    Plant J., 2015. 84(4): p. 773-84
    [PMID:26415082]
  73. Moreno-Risueno MA, et al.
    Transcriptional control of tissue formation throughout root development.
    Science, 2015. 350(6259): p. 426-30
    [PMID:26494755]
  74. Miguel A,Milhinhos A,Novák O,Jones B,Miguel CM
    The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity.
    J. Exp. Bot., 2016. 67(5): p. 1545-55
    [PMID:26709311]
  75. Gong X, et al.
    SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.
    Plant Physiol., 2016. 170(3): p. 1675-83
    [PMID:26818732]
  76. Kim ES, et al.
    HAWAIIAN SKIRT regulates the quiescent center-independent meristem activity in Arabidopsis roots.
    Physiol Plant, 2016. 157(2): p. 221-33
    [PMID:26968317]
  77. Lee SA, et al.
    Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.
    Mol Plant, 2016. 9(6): p. 870-84
    [PMID:26970019]
  78. Li Q,Zhao Y,Yue M,Xue Y,Bao S
    The Protein Arginine Methylase 5 (PRMT5/SKB1) Gene Is Required for the Maintenance of Root Stem Cells in Response to DNA Damage.
    J Genet Genomics, 2016. 43(4): p. 187-97
    [PMID:27090604]
  79. Clark NM, et al.
    Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.
    Elife, 2017.
    [PMID:27288545]
  80. Yoon EK, et al.
    Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots.
    Mol Plant, 2016. 9(8): p. 1197-1209
    [PMID:27353361]
  81. Waszczak C, et al.
    SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.
    Plant Cell, 2016. 28(8): p. 1844-59
    [PMID:27432873]
  82. Yu Q, et al.
    A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.
    PLoS Genet., 2016. 12(9): p. e1006175
    [PMID:27583367]
  83. Sparks EE, et al.
    Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors.
    Dev. Cell, 2016. 39(5): p. 585-596
    [PMID:27923776]
  84. Hirano Y, et al.
    Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD.
    Nat Plants, 2017. 3: p. 17010
    [PMID:28211915]
  85. Henry S, et al.
    SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.
    Dev. Biol., 2017. 425(1): p. 1-7
    [PMID:28263767]
  86. Möller BK, et al.
    Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(12): p. E2533-E2539
    [PMID:28265057]
  87. Kobayashi A,Miura S,Kozaki A
    INDETERMINATE DOMAIN PROTEIN binding sequences in the 5'-untranslated region and promoter of the SCARECROW gene play crucial and distinct roles in regulating SCARECROW expression in roots and leaves.
    Plant Mol. Biol., 2017. 94(1-2): p. 1-13
    [PMID:28324206]
  88. Díaz-Triviño S,Long Y,Scheres B,Blilou I
    Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.
    Methods Mol. Biol., 2017. 1629: p. 83-103
    [PMID:28623581]
  89. Long Y, et al.
    In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots.
    Nature, 2017. 548(7665): p. 97-102
    [PMID:28746306]
  90. Yu Q, et al.
    Cell-Fate Specification in Arabidopsis Roots Requires Coordinative Action of Lineage Instruction and Positional Reprogramming.
    Plant Physiol., 2017. 175(2): p. 816-827
    [PMID:28821591]
  91. Spiegelman Z,Lee CM,Gallagher KL
    KinG Is a Plant-Specific Kinesin That Regulates Both Intra- and Intercellular Movement of SHORT-ROOT.
    Plant Physiol., 2018. 176(1): p. 392-405
    [PMID:29122988]
  92. Bustillo-Avendaño E, et al.
    Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis.
    Plant Physiol., 2018. 176(2): p. 1709-1727
    [PMID:29233938]
  93. Benfey PN, et al.
    Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis.
    Development, 1993. 119(1): p. 57-70
    [PMID:8275864]
  94. Fukaki H, et al.
    Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana.
    Plant J., 1998. 14(4): p. 425-30
    [PMID:9670559]