PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G23810.1
Common NameATWRKY53, F9D16.280, WRKY53
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family WRKY
Protein Properties Length: 324aa    MW: 36272.6 Da    PI: 6.7965
Description WRKY family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G23810.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
         WRKY   2 dDgynWrKYGqKevkgsefprsYYrCtsa...gCpvkkkversaedpkvveitYegeHnhe 59 
                  dD ++WrKYGqK++ g++fprsYYrCt++   +C+++k+v+rs+ d +v+e+tY+g+H+++
                  8***************************9999***************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5081120.954152215IPR003657WRKY domain
Gene3DG3DSA: domain
SuperFamilySSF1182901.15E-24156218IPR003657WRKY domain
SMARTSM007742.7E-38157219IPR003657WRKY domain
PfamPF031061.1E-25158217IPR003657WRKY domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009751Biological Processresponse to salicylic acid
GO:0009816Biological Processdefense response to bacterium, incompatible interaction
GO:0010150Biological Processleaf senescence
GO:0010193Biological Processresponse to ozone
GO:0010200Biological Processresponse to chitin
GO:0031347Biological Processregulation of defense response
GO:0042542Biological Processresponse to hydrogen peroxide
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0009507Cellular Componentchloroplast
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 324 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5w3x_B1e-181572151674Disease resistance protein RRS1
5w3x_D1e-181572151674Disease resistance protein RRS1
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.25720.0flower| leaf| root| vegetative tissue
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT4G23810-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Accumulates during developmental leaf senescence. {ECO:0000269|PubMed:22268143}.
Functional Description ? help Back to Top
Source Description
TAIRmember of WRKY Transcription Factor; Group III
UniProtTranscription factor. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis-acting element (PubMed:20409006). May regulate the early events of leaf senescence (PubMed:17369373, PubMed:20409006). Negatively regulates the expression of ESR/ESP (PubMed:20409006). Together with WRKY46 and WRKY70, promotes resistance to P.syringae, probably by enhancing salicylic acid (SA)- dependent genes. Contributes to the suppression of jasmonic acid (MeJA)-induced expression of PDF1.2 (PubMed:22325892). {ECO:0000269|PubMed:17369373, ECO:0000269|PubMed:20409006, ECO:0000269|PubMed:22325892}.
Function -- GeneRIF ? help Back to Top
  1. These results suggest that WRKY53 and ESR mediate negative crosstalk between pathogen resistance and senescence, which is most likely governed by the jasmonic acid and salicylic acid equilibrium.
    [PMID: 17369373]
  2. MEKK1 is a bifunctional protein: it binds to the promoter of the WRKY53 gene regulating the switch from a leaf age dependent to a plant age dependent expression
    [PMID: 17587183]
  3. WRKY53 and HSPRO2 appear to function downstream of salicylic acid and to be negatively regulated by signaling through jasmonic acid and ethylene.
    [PMID: 17977154]
  4. Heterochromatic silencing by histone methylation of WRKY53 controls leaf senescence.
    [PMID: 19143996]
  5. WRKY53 is ubiquitinated by UPL5 which regulates the WRKY53-mediated leaf senescence pathway.
    [PMID: 20409006]
  6. WRKY46, WRKY70, and WRKY53 positively regulate basal resistance to Pseudomonas syringae; and that they play overlapping and synergetic roles in plant basal defense.
    [PMID: 22325892]
  7. Data indicate that WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence.
    [PMID: 23897923]
  8. WHY1 was an upstream regulator of WRKY53 during leaf senescence.
    [PMID: 23922267]
  9. ATL31 plays a role in senescence together with the WRKY53 transcription factor.
    [PMID: 24399238]
  10. WRKY53 is a master regulator of age-induced leaf senescence.
    [PMID: 25395454]
  11. activated expression inhibits stomatal closure by reducing H2O2 content and facilitates stomatal opening by promoting starch degradation
    [PMID: 25861729]
  12. The findings provide strong support for the direct regulatory roles of TGA3 and WRKY53 in the salicylic acid (SA) and NPR1-dependent activation of a Caulimoviral promoter (CmYLCV).
    [PMID: 28913593]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By salicylic acid (SA) (PubMed:22268143, PubMed:22325892). Strong accumulation during leaf senescence (PubMed:22268143). Down-regulated by jasmonate. Triggered by P.syringae (PubMed:22325892). {ECO:0000269|PubMed:11449049, ECO:0000269|PubMed:11506370, ECO:0000269|PubMed:17369373, ECO:0000269|PubMed:22268143, ECO:0000269|PubMed:22325892}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT4G23810 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT4G23810(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDsalicylic acid
Interaction ? help Back to Top
Source Intact With
IntActSearch Q9SUP6
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Retarded leaf senescence, but no effects on pathogen resistance. {ECO:0000269|PubMed:17369373}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G23810
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF2727480.0AF272748.1 Arabidopsis thaliana WRKY DNA-binding protein 53 (WRKY53) mRNA, complete cds.
GenBankAF3706140.0AF370614.1 Arabidopsis thaliana putative protein (F9D16.280) mRNA, complete cds.
GenBankAK2279380.0AK227938.1 Arabidopsis thaliana mRNA for hypothetical protein, complete cds, clone: RAFL14-49-L02.
GenBankBT0331130.0BT033113.1 Arabidopsis thaliana unknown protein (At4g23810) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_194112.10.0WRKY family transcription factor
SwissprotQ9SUP60.0WRK53_ARATH; Probable WRKY transcription factor 53
STRINGAT4G23810.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1417875
Publications ? help Back to Top
  1. Eulgem T,Rushton PJ,Robatzek S,Somssich IE
    The WRKY superfamily of plant transcription factors.
    Trends Plant Sci., 2000. 5(5): p. 199-206
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  3. Yu D,Chen C,Chen Z
    Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression.
    Plant Cell, 2001. 13(7): p. 1527-40
  4. Hinderhofer K,Zentgraf U
    Identification of a transcription factor specifically expressed at the onset of leaf senescence.
    Planta, 2001. 213(3): p. 469-73
  5. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  6. Miao Y,Laun T,Zimmermann P,Zentgraf U
    Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis.
    Plant Mol. Biol., 2004. 55(6): p. 853-67
  7. Wang D,Amornsiripanitch N,Dong X
    A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.
    PLoS Pathog., 2006. 2(11): p. e123
  8. Popescu SC, et al.
    Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(11): p. 4730-5
  9. Miao Y,Zentgraf U
    The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium.
    Plant Cell, 2007. 19(3): p. 819-30
  10. Miao Y,Laun TM,Smykowski A,Zentgraf U
    Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter.
    Plant Mol. Biol., 2007. 65(1-2): p. 63-76
  11. Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
    Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.
    Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11
  12. Murray SL,Ingle RA,Petersen LN,Denby KJ
    Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein.
    Mol. Plant Microbe Interact., 2007. 20(11): p. 1431-8
  13. Wei W,Zhang Y,Han L,Guan Z,Chai T
    A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco.
    Plant Cell Rep., 2008. 27(4): p. 795-803
  14. Zybailov B, et al.
    Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.
    PLoS ONE, 2008. 3(4): p. e1994
  15. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  16. Kim CY,Bove J,Assmann SM
    Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death.
    New Phytol., 2008. 180(1): p. 57-70
  17. Miao Y,Smykowski A,Zentgraf U
    A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana.
    Plant Biol (Stuttg), 2008. 10 Suppl 1: p. 110-20
  18. Balazadeh S,Parlitz S,Mueller-Roeber B,Meyer RC
    Natural developmental variations in leaf and plant senescence in Arabidopsis thaliana.
    Plant Biol (Stuttg), 2008. 10 Suppl 1: p. 136-47
  19. Ay N, et al.
    Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana.
    Plant J., 2009. 58(2): p. 333-46
  20. Zentgraf U,Laun T,Miao Y
    The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana.
    Eur. J. Cell Biol., 2010 Feb-Mar. 89(2-3): p. 133-7
  21. Yamaguchi Y,Huffaker A,Bryan AC,Tax FE,Ryan CA
    PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis.
    Plant Cell, 2010. 22(2): p. 508-22
  22. Fischer-Kilbienski I, et al.
    Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness.
    Plant Mol. Biol., 2010. 73(4-5): p. 379-90
  23. Miao Y,Zentgraf U
    A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53.
    Plant J., 2010. 63(2): p. 179-88
  24. Wan J,Zhang S,Stacey G
    Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin.
    Mol. Plant Pathol., 2004. 5(2): p. 125-35
  25. Golisz A,Sugano M,Hiradate S,Fujii Y
    Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA.
    Planta, 2011. 233(2): p. 231-40
  26. Shang J, et al.
    A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid.
    Planta, 2011. 233(2): p. 299-308
  27. Zhou X,Jiang Y,Yu D
    WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis.
    Mol. Cells, 2011. 31(4): p. 303-13
  28. Luna E,Bruce TJ,Roberts MR,Flors V,Ton J
    Next-generation systemic acquired resistance.
    Plant Physiol., 2012. 158(2): p. 844-53
  29. Besseau S,Li J,Palva ET
    WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana.
    J. Exp. Bot., 2012. 63(7): p. 2667-79
  30. Hu Y,Dong Q,Yu D
    Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae.
    Plant Sci., 2012. 185-186: p. 288-97
  31. Vogelmann K, et al.
    Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway.
    Plant Physiol., 2012. 159(4): p. 1477-87
  32. Singh P,Chien CC,Mishra S,Tsai CH,Zimmerli L
    The Arabidopsis LECTIN RECEPTOR KINASE-VI.2 is a functional protein kinase and is dispensable for basal resistance to Botrytis cinerea.
    Plant Signal Behav, 2013. 8(1): p. e22611
  33. Efroni I, et al.
    Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses.
    Dev. Cell, 2013. 24(4): p. 438-45
  34. Reusche M, et al.
    Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum.
    Mol. Plant Microbe Interact., 2013. 26(8): p. 850-60
  35. Koyama T, et al.
    A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence.
    Plant Physiol., 2013. 162(2): p. 991-1005
  36. Ramírez V,López A,Mauch-Mani B,Gil MJ,Vera P
    An extracellular subtilase switch for immune priming in Arabidopsis.
    PLoS Pathog., 2013. 9(6): p. e1003445
  37. Hsu FC, et al.
    Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis.
    Plant Cell, 2013. 25(7): p. 2699-713
  38. Miao Y,Jiang J,Ren Y,Zhao Z
    The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis.
    Plant Physiol., 2013. 163(2): p. 746-56
  39. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  40. Aoyama S, et al.
    Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis.
    Plant Cell Physiol., 2014. 55(2): p. 293-305
  41. Singh V,Roy S,Singh D,Nandi AK
    Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes.
    J. Biosci., 2014. 39(1): p. 119-26
  42. Xie Y, et al.
    REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis.
    Development, 2014. 141(24): p. 4772-83
  43. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  44. Sun Y,Yu D
    Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement.
    Plant Cell Rep., 2015. 34(8): p. 1295-306
  45. Zhang H, et al.
    Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea.
    Front Plant Sci, 2015. 6: p. 686
  46. Ramírez V,López A,Mauch-Mani B,Gil MJ,Vera P
    Correction: An Extracellular Subtilase Switch for Immune Priming in Arabidopsis.
    PLoS Pathog., 2016. 12(11): p. e1006003
  47. Chen X, et al.
    POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis.
    Elife, 2017.
  48. Nie P, et al.
    Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 238
  49. Ren Y,Li Y,Jiang Y,Wu B,Miao Y
    Phosphorylation of WHIRLY1 by CIPK14 Shifts Its Localization and Dual Functions in Arabidopsis.
    Mol Plant, 2017. 10(5): p. 749-763
  50. Sarkar S, et al.
    Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta.
    Planta, 2018. 247(1): p. 181-199
  51. Crespo-Salvador Ó,Escamilla-Aguilar M,López-Cruz J,López-Rodas G,González-Bosch C
    Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea.
    Plant Cell Rep., 2018. 37(1): p. 153-166
  52. Yuan N, et al.
    STRESS INDUCED FACTOR 2, a Leucine-Rich Repeat Kinase Regulates Basal Plant Pathogen Defense.
    Plant Physiol., 2018. 176(4): p. 3062-3080