PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G17500.1
Common NameATERF-1, dl4785w, ERF-1, ERF100, ERF1A, FCAALL.123
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ERF
Protein Properties Length: 268aa    MW: 29189.8 Da    PI: 8.7825
Description ethylene responsive element binding factor 1
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G17500.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP262.49.6e-20147197255
          AP2   2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                  +y+GVr+++ +g+++AeIrdp +ng  +r++lg+f tae+Aa a+++a+ +++g
  AT4G17500.1 147 HYRGVRQRP-WGKFAAEIRDPAKNG--ARVWLGTFETAEDAALAYDRAAFRMRG 197
                  8********.***********9987..*************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000185.09E-32146205No hitNo description
Gene3DG3DSA:3.30.730.101.7E-32146205IPR001471AP2/ERF domain
PROSITE profilePS5103224.276147205IPR001471AP2/ERF domain
PfamPF008476.4E-14147197IPR001471AP2/ERF domain
SMARTSM003806.8E-41147211IPR001471AP2/ERF domain
SuperFamilySSF541712.09E-23147207IPR016177DNA-binding domain
PRINTSPR003675.3E-11148159IPR001471AP2/ERF domain
PRINTSPR003675.3E-11171187IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0001944Biological Processvasculature development
GO:0006952Biological Processdefense response
GO:0009873Biological Processethylene-activated signaling pathway
GO:0010200Biological Processresponse to chitin
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0051301Biological Processcell division
GO:0005643Cellular Componentnuclear pore
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 268 aa     Download sequence    Send to blast
MSMTADSQSD YAFLESIRRH LLGESEPILS ESTASSVTQS CVTGQSIKPV YGRNPSFSKL  60
YPCFTESWGD LPLKENDSED MLVYGILNDA FHGGWEPSSS SSDEDRSSFP SVKIETPESF  120
AAVDSVPVKK EKTSPVSAAV TAAKGKHYRG VRQRPWGKFA AEIRDPAKNG ARVWLGTFET  180
AEDAALAYDR AAFRMRGSRA LLNFPLRVNS GEPDPVRIKS KRSSFSSSNE NGAPKKRRTV  240
AAGGGMDKGL TVKCEVVEVA RGDRLLVL
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
2gcc_A1e-44143212170ATERF1
3gcc_A1e-44143212170ATERF1
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1233239PKKRRTV
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.231850.0leaf| root| seed| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO2402559740.0
Genevisible245252_at0.0
Expression AtlasAT4G17500-
AtGenExpressAT4G17500-
ATTED-IIAT4G17500-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Ubiquitously expressed, mostly in flowers and rosettes after ethylene treatment. {ECO:0000269|PubMed:11950980}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a member of the ERF (ethylene response factor) subfamily B-3 of ERF/AP2 transcription factor family (ATERF-1). The protein contains one AP2 domain. There are 18 members in this subfamily including ATERF-1, ATERF-2, AND ATERF-5.
UniProtActs as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways. {ECO:0000269|PubMed:10715325, ECO:0000269|PubMed:11950980, ECO:0000269|PubMed:9756931}.
Function -- GeneRIF ? help Back to Top
  1. Mutual regulation of APETALA2 and ethylene-responsive element binding protein in A. thaliana is described and discussed.
    [PMID: 17204538]
  2. AtERF1 domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference
    [PMID: 19878300]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT4G17500.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by Pseudomonas syringae tomato (both virulent and avirulent avrRpt2 strains), independently of PAD4. Also induced by methyl jasmonate (MeJA) independently of JAR1. Ethylene induction is completely dependent on a functional ETHYLENE-INSENSITIVE2 (EIN2), whereas induction by wounding does not need EIN2. Induction by salicylic acid (SA) seems to be independent of PAD4 and NPR1. Transcripts accumulate strongly in cycloheximide-treated plants, a protein synthesis inhibitor. Seems to not be influenced by exogenous abscisic acid (ABA), cold, heat, NaCl or drought stress. {ECO:0000269|PubMed:10715325, ECO:0000269|PubMed:11950980}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G17500
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0581740.0AY058174.1 Arabidopsis thaliana AT4g17500/dl4785w mRNA, complete cds.
GenBankAY0625330.0AY062533.1 Arabidopsis thaliana Unknown protein mRNA, complete cds.
GenBankBT0025780.0BT002578.1 Arabidopsis thaliana Unknown protein (At4g17500) mRNA, complete cds.
GenBankCP0026870.0CP002687.1 Arabidopsis thaliana chromosome 4 sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_567530.40.0ethylene responsive element binding factor 1
SwissprotO803370.0EF100_ARATH; Ethylene-responsive transcription factor 1A
TrEMBLA0A178UYV20.0A0A178UYV2_ARATH; ERF-1
STRINGAT4G17500.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM10281650
Representative plantOGRP6161718
Publications ? help Back to Top
  1. Fujimoto SY,Ohta M,Usui A,Shinshi H,Ohme-Takagi M
    Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression.
    Plant Cell, 2000. 12(3): p. 393-404
    [PMID:10715325]
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  3. Bancroft I
    Duplicate and diverge: the evolution of plant genome microstructure.
    Trends Genet., 2001. 17(2): p. 89-93
    [PMID:11173118]
  4. O
    Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection.
    Plant Physiol., 2002. 128(4): p. 1313-22
    [PMID:11950980]
  5. Gutierrez RA,Ewing RM,Cherry JM,Green PJ
    Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: rapid decay is associated with a group of touch- and specific clock-controlled genes.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(17): p. 11513-8
    [PMID:12167669]
  6. Menges M,Hennig L,Gruissem W,Murray JA
    Cell cycle-regulated gene expression in Arabidopsis.
    J. Biol. Chem., 2002. 277(44): p. 41987-2002
    [PMID:12169696]
  7. Kreps JA, et al.
    Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress.
    Plant Physiol., 2002. 130(4): p. 2129-41
    [PMID:12481097]
  8. Whitham SA, et al.
    Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants.
    Plant J., 2003. 33(2): p. 271-83
    [PMID:12535341]
  9. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  10. Eulgem T, et al.
    Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance.
    Plant Physiol., 2004. 135(2): p. 1129-44
    [PMID:15181204]
  11. Ko JH,Han KH,Park S,Yang J
    Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling.
    Plant Physiol., 2004. 135(2): p. 1069-83
    [PMID:15194820]
  12. Guan Y,Nothnagel EA
    Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures.
    Plant Physiol., 2004. 135(3): p. 1346-66
    [PMID:15235117]
  13. Zimmermann P,Hirsch-Hoffmann M,Hennig L,Gruissem W
    GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.
    Plant Physiol., 2004. 136(1): p. 2621-32
    [PMID:15375207]
  14. Rana D, et al.
    Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives.
    Plant J., 2004. 40(5): p. 725-33
    [PMID:15546355]
  15. Stanley Kim H, et al.
    Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome.
    Plant J., 2005. 41(2): p. 212-20
    [PMID:15634198]
  16. Desveaux D,Maréchal A,Brisson N
    Whirly transcription factors: defense gene regulation and beyond.
    Trends Plant Sci., 2005. 10(2): p. 95-102
    [PMID:15708347]
  17. Devoto A, et al.
    Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions.
    Plant Mol. Biol., 2005. 58(4): p. 497-513
    [PMID:16021335]
  18. Wang J, et al.
    Genomewide nonadditive gene regulation in Arabidopsis allotetraploids.
    Genetics, 2006. 172(1): p. 507-17
    [PMID:16172500]
  19. McGrath KC, et al.
    Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression.
    Plant Physiol., 2005. 139(2): p. 949-59
    [PMID:16183832]
  20. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  21. Nakano T,Suzuki K,Fujimura T,Shinshi H
    Genome-wide analysis of the ERF gene family in Arabidopsis and rice.
    Plant Physiol., 2006. 140(2): p. 411-32
    [PMID:16407444]
  22. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
    [PMID:16553893]
  23. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
    [PMID:16553894]
  24. Town CD, et al.
    Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy.
    Plant Cell, 2006. 18(6): p. 1348-59
    [PMID:16632643]
  25. Nemhauser JL,Hong F,Chory J
    Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses.
    Cell, 2006. 126(3): p. 467-75
    [PMID:16901781]
  26. Kaplan B, et al.
    Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis.
    Plant Cell, 2006. 18(10): p. 2733-48
    [PMID:16980540]
  27. Little D,Gouhier-Darimont C,Bruessow F,Reymond P
    Oviposition by pierid butterflies triggers defense responses in Arabidopsis.
    Plant Physiol., 2007. 143(2): p. 784-800
    [PMID:17142483]
  28. Ogawa T,Uchimiya H,Kawai-Yamada M
    Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2.
    Ann. Bot., 2007. 99(2): p. 239-44
    [PMID:17204538]
  29. Lee J, et al.
    Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development.
    Plant Cell, 2007. 19(3): p. 731-49
    [PMID:17337630]
  30. Kusnierczyk A, et al.
    Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae.
    J. Exp. Bot., 2007. 58(10): p. 2537-52
    [PMID:17545220]
  31. Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
    Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.
    Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11
    [PMID:17722694]
  32. Chawade A,Br
    Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors.
    BMC Genomics, 2007. 8: p. 304
    [PMID:17764576]
  33. Wang Z, et al.
    Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants.
    Plant Cell Rep., 2008. 27(1): p. 125-35
    [PMID:17786451]
  34. Ferreira FJ,Guo C,Coleman JR
    Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship.
    Plant Physiol., 2008. 147(2): p. 585-94
    [PMID:18434607]
  35. Veyres N, et al.
    The Arabidopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence.
    Plant J., 2008. 55(4): p. 665-86
    [PMID:18452589]
  36. Pré M, et al.
    The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense.
    Plant Physiol., 2008. 147(3): p. 1347-57
    [PMID:18467450]
  37. Jakoby MJ, et al.
    Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106.
    Plant Physiol., 2008. 148(3): p. 1583-602
    [PMID:18805951]
  38. Wawrzynska A,Christiansen KM,Lan Y,Rodibaugh NL,Innes RW
    Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling.
    Plant Physiol., 2008. 148(3): p. 1510-22
    [PMID:18815384]
  39. Gong W, et al.
    The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors.
    Mol Plant, 2008. 1(1): p. 27-41
    [PMID:19802365]
  40. Yang S, et al.
    Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference.
    FEBS J., 2009. 276(23): p. 7177-86
    [PMID:19878300]
  41. Shin R,Jez JM,Basra A,Zhang B,Schachtman DP
    14-3-3 proteins fine-tune plant nutrient metabolism.
    FEBS Lett., 2011. 585(1): p. 143-7
    [PMID:21094157]
  42. Etchells JP,Provost CM,Turner SR
    Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling.
    PLoS Genet., 2012. 8(11): p. e1002997
    [PMID:23166504]
  43. Allen MD,Yamasaki K,Ohme-Takagi M,Tateno M,Suzuki M
    A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA.
    EMBO J., 1998. 17(18): p. 5484-96
    [PMID:9736626]
  44. Hao D,Ohme-Takagi M,Sarai A
    Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant.
    J. Biol. Chem., 1998. 273(41): p. 26857-61
    [PMID:9756931]