PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G56400.1
Common NameATWRKY70, T5P19.50, WRKY70
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family WRKY
Protein Properties Length: 294aa    MW: 32935.6 Da    PI: 6.2319
Description WRKY DNA-binding protein 70
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G56400.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
         WRKY   2 dDgynWrKYGqKevkgsefprsYYrCtsa...gCpvkkkversaedpkvveitYegeHnhe 59 
                  +D ++WrKYGqKe+ +++fprsY+rCt++   gC+++k+v++ + +pk++ itY g+H+++
                  8***************************99999**************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA: domain
PROSITE profilePS5081120.656114182IPR003657WRKY domain
SuperFamilySSF1182901.31E-23114181IPR003657WRKY domain
SMARTSM007741.2E-37119181IPR003657WRKY domain
PfamPF031062.3E-24120179IPR003657WRKY domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009862Biological Processsystemic acquired resistance, salicylic acid mediated signaling pathway
GO:0009864Biological Processinduced systemic resistance, jasmonic acid mediated signaling pathway
GO:0010200Biological Processresponse to chitin
GO:0045892Biological Processnegative regulation of transcription, DNA-templated
GO:0050832Biological Processdefense response to fungus
GO:1900056Biological Processnegative regulation of leaf senescence
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 294 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
No. Start End Sequence
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.52420.0leaf| root| seed
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT3G56400-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: In flowers, first observed in both stigmatic papillae and the flower abscission zone, later confined to the abscission zone (PubMed:17310369). In leaves, level increases gradually up to the point of leaf senescence (PubMed:17310369, PubMed:22268143). {ECO:0000269|PubMed:17310369, ECO:0000269|PubMed:22268143}.
UniprotTISSUE SPECIFICITY: Expressed in leaves and flowers. {ECO:0000269|PubMed:17310369, ECO:0000269|PubMed:22268143}.
Functional Description ? help Back to Top
Source Description
TAIRmember of WRKY Transcription Factor; Group III. Function as activator of SA-dependent defense genes and a repressor of JA-regulated genes. WRKY70-controlled suppression of JA-signaling is partly executed by NPR1.
UniProtTranscription factor involved in senescence, biotic and abiotic stress responses by modulating various phytohormones signaling pathways (PubMed:14742872, PubMed:16623907, PubMed:17310369, PubMed:28576847). Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis-acting element (By similarity). Binds to the 5'-[CT]GACTTTT-3' motif in promoters of target genes to induce their expression (PubMed:24104863). Plays an important but not indispensable role in jasmonate and salicylic acid signaling (PubMed:18713432). Regulates positively the salicylic acid (SA)-mediated signal pathway, but negatively the jasmonic acid (JA)-mediated signal pathway, thus determining the balance between these mutually antagonistic pathways (PubMed:14742872, PubMed:16623907, PubMed:18713432, PubMed:28837631). Together with WRKY46, WRKY53 and WRKY54, prevents defense response to the necrotrophic pathogens P.carotovorum and B.cinerea, but promotes defense responses (including SA-induced pathogenesis-related (PR) genes expression) against biotrophic/hemibiotrophic SA-monitored pathogens (e.g. P.syringae, E.carotovora subsp. carotovora SCC3193 and E.cichoracearum), probably by regulating negatively the JA/ET and positively the SA signaling pathways (PubMed:28837631, PubMed:16623907, PubMed:22325892). Contributes to the suppression of jasmonic acid (MeJA)-induced expression of JA-responsive genes (e.g. PDF1.2) (PubMed:22325892, PubMed:16623907). Promotes susceptibility to JA-monitored pathogens (e.g. A.brassicicola), probably by facilitating SA-controlled suppression of JA-mediated defense. Represses the biosynthesis of the phytoalexin camalexin and indol-3-ylmethyl glucosinolate (IGS) (PubMed:16623907). Represses both SA and JA/ethylene (ET) mediated defense marker genes expression (PubMed:17310369). Negative regulator of SA biosynthesis (PubMed:28837631). Negative regulator of EDS1-dependent defense against E.amylovora (PubMed:22316300). Required for RPP4-mediated disease resistance and basal defense against H.parasitica, probably via late up-regulation (LURP) of resistance genes (e.g. CML10/CaBP22 and LURP1) (PubMed:17313163). Probably involved in defense responses toward insects (e.g. P.xylostella and B.brassicae) (PubMed:25339349). Together with WRKY54, negative regulator of developmental senescence, probably via the regulation of several senescence-associated markers genes (PubMed:17310369, PubMed:22268143). Together with WRKY46 and WRKY54, promotes brassinosteroid (BR)-regulated plant growth but prevent drought response by modulating gene expression (PubMed:28576847). In collaboration with WRKY54, prevents stomatal closure and, consequently, osmotic stress tolerance (PubMed:23815736). Regulates rhizobacterium B.cereus AR156-induced systemic resistance (ISR) to P.syringae pv. tomato DC3000 (PubMed:26433201). {ECO:0000250|UniProtKB:Q9SUP6, ECO:0000269|PubMed:14742872, ECO:0000269|PubMed:16623907, ECO:0000269|PubMed:17310369, ECO:0000269|PubMed:17313163, ECO:0000269|PubMed:18713432, ECO:0000269|PubMed:22268143, ECO:0000269|PubMed:22316300, ECO:0000269|PubMed:22325892, ECO:0000269|PubMed:23815736, ECO:0000269|PubMed:24104863, ECO:0000269|PubMed:25339349, ECO:0000269|PubMed:26433201, ECO:0000269|PubMed:28576847, ECO:0000269|PubMed:28837631, ECO:0000303|PubMed:28837631}.
Function -- GeneRIF ? help Back to Top
  1. WRKY70 has a pivotal role in determining the balance between SA-dependent and JA-dependent defense pathways.
    [PMID: 16623907]
  2. To expand understanding on how transcriptional control coordinates leaf senescence, AtWRKY70, a gene encoding a WRKY transcription factor that functions as a negative regulator of developmental senescence was characterized.
    [PMID: 17310369]
  3. The inactivation of the WRKY70 gene in wrky70-1 mutant does not alter the responses of both jasmonic acid (JA) and salicylic acid (SA), and that wrky70 mutation is unable to restore the coi1 mutant in JA responses.
    [PMID: 18713432]
  4. WRKY70 is required for snc2-1D-mediated resistance.
    [PMID: 20841424]
  5. WRKY54 and WRKY70 are negative regulators of leaf senescence.
    [PMID: 22268143]
  6. WRKY46, WRKY70, and WRKY53 positively regulate basal resistance to Pseudomonas syringae; and that they play overlapping and synergetic roles in plant basal defense.
    [PMID: 22325892]
  7. AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70
    [PMID: 23067202]
  8. AtMYB44 regulates defense responses by transcriptional activation of downstream gene, WRKY70.
    [PMID: 23603962]
  9. WRKY70 and WRKY54 co-operate as negative regulators of stomatal closure and, consequently, osmotic stress tolerance in Arabidopsis, suggesting that they have an important role, not only in plant defense, but also in abiotic stress signaling.
    [PMID: 23815736]
  10. Data indicate that the nucleotides CGAC are essential for WRKY70-activated gene expression.
    [PMID: 24104863]
  11. A lower expression level of WRKY70 leads to significantly higher MYC2 expression through salicylic acid (SA)-jasmonic acid (JA) cross-talk.
    [PMID: 25339349]
  12. Bacillus cereus AR156 treatment significantly stimulated the transcription of WRKY70, but suppressed that of WRKY11 in Arabidopsis leaves. They were shown to be required for AR156 enhancing the activation of cellular defence responses.
    [PMID: 26433201]
  13. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses
    [PMID: 28576847]
  14. data suggest that the elevated SA level in the wrky54wrky70 double mutant results in moderate accumulation of H2O2, in promoting cell wall fortification and consequently enhanced resistance to necrotrophs but is not sufficient to trigger hypersensitive reaction (HR)-like cell death and resistance to biotrophs/hemibiotrophs like Pst DC3000
    [PMID: 28837631]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Regulated by MYB44 (PubMed:23067202, PubMed:23603962). Basal expression levels require the presence of endogeneous salicylic acid (SA) (PubMed:14742872, PubMed:17310369). Induced by reactive oxygen species (ROS) (PubMed:22268143). Early but transient accumulation after osmotic stress (e.g. polyethylene glycol, PEG) (PubMed:23815736). Induced by SA; early induction is NPR1-independent, but full-scale induction is NPR1-dependent (PubMed:14742872, PubMed:22325892, PubMed:22268143, PubMed:26433201). Up-regulated by benzothiadiazole (BTH) (PubMed:26433201). Repressed by jasmonic acid (MeJA) by both COI1-dependent and COI1-independent pathways (PubMed:14742872, PubMed:18713432). Triggered by the pathogenic compatible bacteria E.carotovora subsp. carotovora SCC3193 (PubMed:14742872). Induced by P.syringae pv. tomato DC3000 (PubMed:17965588, PubMed:22325892). Stimulated by ATX1 (PubMed:17965588). Up-regulated by E.amylovora (PubMed:22316300). Accumulates during leaf and flower senescence (PubMed:17310369). Induced expression upon simultaneous feeding by caterpillars (e.g. P.xylostella) and aphids (e.g. B.brassicae) at a low density, but lower levels in plants induced with both caterpillars and a high aphid density (PubMed:25339349). Responsive to rhizobacterium B.cereus AR156 in leaves (PubMed:26433201). {ECO:0000269|PubMed:14742872, ECO:0000269|PubMed:17310369, ECO:0000269|PubMed:17965588, ECO:0000269|PubMed:18713432, ECO:0000269|PubMed:22268143, ECO:0000269|PubMed:22316300, ECO:0000269|PubMed:22325892, ECO:0000269|PubMed:23067202, ECO:0000269|PubMed:23603962, ECO:0000269|PubMed:23815736, ECO:0000269|PubMed:25339349, ECO:0000269|PubMed:26433201}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G24570 (R), AT4G31550 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G19670(R), AT1G75040(A), AT2G14560(A), AT2G14610(A), AT2G18660(A), AT3G57260(A), AT4G24240(R), AT5G44420(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDjasmonic acid, salicylic acid
Interaction ? help Back to Top
Source Intact With
IntActSearch Q9LY00
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G56400
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF4211570.0AF421157.1 Arabidopsis thaliana WRKY transcription factor 70 (WRKY70) mRNA, complete cds.
GenBankAY0399330.0AY039933.1 Arabidopsis thaliana putative DNA-binding protein (At3g56400) mRNA, complete cds.
GenBankAY1425660.0AY142566.1 Arabidopsis thaliana putative DNA-binding protein (At3g56400) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_191199.10.0WRKY DNA-binding protein 70
SwissprotQ9LY000.0WRK70_ARATH; Probable WRKY transcription factor 70
STRINGAT3G56400.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1417875
Publications ? help Back to Top
  1. Eulgem T,Rushton PJ,Robatzek S,Somssich IE
    The WRKY superfamily of plant transcription factors.
    Trends Plant Sci., 2000. 5(5): p. 199-206
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  3. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  4. Li J,Brader G,Palva ET
    The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense.
    Plant Cell, 2004. 16(2): p. 319-31
  5. Dong X
    NPR1, all things considered.
    Curr. Opin. Plant Biol., 2004. 7(5): p. 547-52
  6. Lorenzo O,Solano R
    Molecular players regulating the jasmonate signalling network.
    Curr. Opin. Plant Biol., 2005. 8(5): p. 532-40
  7. McGrath KC, et al.
    Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression.
    Plant Physiol., 2005. 139(2): p. 949-59
  8. Li J,Brader G,Kariola T,Palva ET
    WRKY70 modulates the selection of signaling pathways in plant defense.
    Plant J., 2006. 46(3): p. 477-91
  9. Brodersen P, et al.
    Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4.
    Plant J., 2006. 47(4): p. 532-46
  10. AbuQamar S, et al.
    Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.
    Plant J., 2006. 48(1): p. 28-44
  11. Kim KC,Fan B,Chen Z
    Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae.
    Plant Physiol., 2006. 142(3): p. 1180-92
  12. Wang D,Amornsiripanitch N,Dong X
    A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.
    PLoS Pathog., 2006. 2(11): p. e123
  13. Journot-Catalino N,Somssich IE,Roby D,Kroj T
    The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana.
    Plant Cell, 2006. 18(11): p. 3289-302
  14. Ciftci-Yilmaz S, et al.
    The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress.
    J. Biol. Chem., 2007. 282(12): p. 9260-8
  15. Ulker B,Shahid Mukhtar M,Somssich IE
    The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways.
    Planta, 2007. 226(1): p. 125-37
  16. Knoth C,Ringler J,Dangl JL,Eulgem T
    Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica.
    Mol. Plant Microbe Interact., 2007. 20(2): p. 120-8
  17. Miao Y,Zentgraf U
    The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium.
    Plant Cell, 2007. 19(3): p. 819-30
  18. Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
    Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.
    Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11
  19. Alvarez-Venegas R,Abdallat AA,Guo M,Alfano JR,Avramova Z
    Epigenetic control of a transcription factor at the cross section of two antagonistic pathways.
    Epigenetics, 2007 Apr-Jun. 2(2): p. 106-13
  20. Meier S, et al.
    Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides.
    BMC Plant Biol., 2008. 8: p. 24
  21. Koornneef A,Pieterse CM
    Cross talk in defense signaling.
    Plant Physiol., 2008. 146(3): p. 839-44
  22. Knoth C,Eulgem T
    The oomycete response gene LURP1 is required for defense against Hyaloperonospora parasitica in Arabidopsis thaliana.
    Plant J., 2008. 55(1): p. 53-64
  23. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  24. Kim CY,Bove J,Assmann SM
    Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death.
    New Phytol., 2008. 180(1): p. 57-70
  25. Ren CM, et al.
    Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling.
    J Integr Plant Biol, 2008. 50(5): p. 630-7
  26. Ishikawa K, et al.
    AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling.
    Plant Physiol., 2010. 152(4): p. 2000-12
  27. Zhang Y, et al.
    Arabidopsis snc2-1D activates receptor-like protein-mediated immunity transduced through WRKY70.
    Plant Cell, 2010. 22(9): p. 3153-63
  28. Ndamukong I,Jones DR,Lapko H,Divecha N,Avramova Z
    Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1.
    PLoS ONE, 2010. 5(10): p. e13396
  29. Shang J, et al.
    A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid.
    Planta, 2011. 233(2): p. 299-308
  30. Zhou X,Jiang Y,Yu D
    WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis.
    Mol. Cells, 2011. 31(4): p. 303-13
  31. Sharon M,Freeman S,Sneh B
    Assessment of resistance pathways induced in Arabidopsis thaliana by hypovirulent Rhizoctonia spp. isolates.
    Phytopathology, 2011. 101(7): p. 828-38
  32. Atamian HS,Eulgem T,Kaloshian I
    SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato.
    Planta, 2012. 235(2): p. 299-309
  33. von Saint Paul V, et al.
    The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence.
    Plant Cell, 2011. 23(11): p. 4124-45
  34. Besseau S,Li J,Palva ET
    WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana.
    J. Exp. Bot., 2012. 63(7): p. 2667-79
  35. Moreau M, et al.
    EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.
    Mol. Plant Microbe Interact., 2012. 25(3): p. 421-30
  36. Hu Y,Dong Q,Yu D
    Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae.
    Plant Sci., 2012. 185-186: p. 288-97
  37. Mafra V, et al.
    Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions.
    PLoS ONE, 2012. 7(2): p. e31263
  38. Shim JS, et al.
    AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling.
    Plant J., 2013. 73(3): p. 483-95
  39. Shim JS,Choi YD
    Direct regulation of WRKY70 by AtMYB44 in plant defense responses.
    Plant Signal Behav, 2013. 8(6): p. e20783
  40. Li J, et al.
    Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis.
    New Phytol., 2013. 200(2): p. 457-72
  41. Machens F,Becker M,Umrath F,Hehl R
    Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana.
    Plant Mol. Biol., 2014. 84(4-5): p. 371-85
  42. Zhang X, et al.
    Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae.
    Plant Physiol. Biochem., 2013. 73: p. 383-91
  43. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  44. Brosché M, et al.
    Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1.
    PLoS Genet., 2014. 10(2): p. e1004112
  45. Bao F, et al.
    Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses.
    New Phytol., 2014. 202(4): p. 1320-34
  46. Kroes A,van Loon JJ,Dicke M
    Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors.
    Plant Cell Physiol., 2015. 56(1): p. 98-106
  47. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  48. Wang F, et al.
    TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 108
  49. Jiang CH, et al.
    Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis.
    J. Exp. Bot., 2016. 67(1): p. 157-74
  50. Kaurilind E,Xu E,Brosché M
    A genetic framework for H2O2 induced cell death in Arabidopsis thaliana.
    BMC Genomics, 2015. 16: p. 837
  51. Rodriguez-Salus M, et al.
    The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis.
    Plant Physiol., 2016. 170(1): p. 444-58
  52. Onkokesung N,Reichelt M,van Doorn A,Schuurink RC,Dicke M
    Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis.
    Plant Physiol., 2016. 170(2): p. 891-906
  53. Chen J, et al.
    Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses.
    Plant Cell, 2017. 29(6): p. 1425-1439
  54. Li J,Zhong R,Palva ET
    WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis.
    PLoS ONE, 2017. 12(8): p. e0183731
  55. Zhou M, et al.
    WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1.
    New Phytol., 2018. 217(2): p. 700-712