PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G26744.2
Common NameATICE1, BHLH116, EN45, ICE1, MDJ14.1, MLJ15.14, SCRM
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bHLH
Protein Properties Length: 494aa    MW: 53538.9 Da    PI: 5.1164
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G26744.2genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH35.91.4e-11310352754
                  HHHHHHHHHHHHHHHHHHCTSCC.C...TTS-STCHHHHHHHHHHHHHH CS
          HLH   7 erErrRRdriNsafeeLrellPk.askapskKlsKaeiLekAveYIksL 54 
                  ++ErrRR+++N+++  Lr+++Pk +      K++ a+iL  A++Y+k+L
  AT3G26744.2 310 MAERRRRKKLNDRLYMLRSVVPKiS------KMDRASILGDAIDYLKEL 352
                  79*********************66......****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088815.866303352IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474591.01E-16306373IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003534.2E-14309358IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000103.3E-9309352IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000833.97E-13310356No hitNo description
Gene3DG3DSA:4.10.280.101.9E-15310365IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd048737.80E-7423483No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0010440Biological Processstomatal lineage progression
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0050826Biological Processresponse to freezing
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000263anatomynon-hair root epidermal cell
PO:0000293anatomyguard cell
PO:0002000anatomystomatal complex
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025195anatomypollen tube cell
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 494 aa     Download sequence    Send to blast
MGLDGNNGGG VWLNGGGGER EENEEGSWGR NQEDGSSQFK PMLEGDWFSS NQPHPQDLQM  60
LQNQPDFRYF GGFPFNPNDN LLLQHSIDSS SSCSPSQAFS LDPSQQNQFL STNNNKGCLL  120
NVPSSANPFD NAFEFGSESG FLNQIHAPIS MGFGSLTQLG NRDLSSVPDF LSARSLLAPE  180
SNNNNTMLCG GFTAPLELEG FGSPANGGFV GNRAKVLKPL EVLASSGAQP TLFQKRAAMR  240
QSSGSKMGNS ESSGMRRFSD DGDMDETGIE VSGLNYESDE INESGKAAES VQIGGGGKGK  300
KKGMPAKNLM AERRRRKKLN DRLYMLRSVV PKISKMDRAS ILGDAIDYLK ELLQRINDLH  360
NELESTPPGS LPPTSSSFHP LTPTPQTLSC RVKEELCPSS LPSPKGQQAR VEVRLREGRA  420
VNIHMFCGRR PGLLLATMKA LDNLGLDVQQ AVISCFNGFA LDVFRAEQCQ EGQEILPDQI  480
KAVLFDTAGY AGMI
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1299317KKKGMPAKNLMAERRRRKK
2311318ERRRRKKL
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.253020.0bud| flower| seed| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO1453389760.0
Genevisible258310_at0.0
Expression AtlasAT3G26744-
AtGenExpressAT3G26744-
ATTED-IIAT3G26744-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Widely expressed in the whole plant with high expression in leaves and stem. Broad expression within stomatal cell lineages of leaf epidermis. {ECO:0000269|PubMed:18641265}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a MYC-like bHLH transcriptional activator that binds specifically to the MYC recognition sequences in the CBF3 promoter. Mutants are defective in cold-regulated gene expression. Cold stress triggers protein degradation of nuclear GFPICE1 protein, and the RING finger protein HOS1 is required. Sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance.
UniProtTranscriptional activator that regulates the cold-induced transcription of CBF/DREB1 genes. Binds specifically to the MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A promoter. Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation (PubMed:18641265, PubMed:28507175). {ECO:0000269|PubMed:17416732, ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:28507175}.
Function -- GeneRIF ? help Back to Top
  1. cold stress responses in Arabidopsis are attenuated by a ubiquitination/proteasome pathway in which HOS1 mediates the degradation of the ICE1 protein
    [PMID: 16702557]
  2. Regulon genes repressed by siz1 did not affect expression of ICE1, which encodes a MYC transcription factor.
    [PMID: 17416732]
  3. The inducer of CBF expression1 (ICE1) protein that is involved in transcriptional control of cold responses is found to bind to a MYC element in this BAP1 promoter and is required for the cooling induction of BAP1.
    [PMID: 21098676]
  4. The serine 403 to alanine substitution increases the transactivation activity of ICE1 and the freezing tolerance of Arabidopsis.
    [PMID: 21447070]
  5. Jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.
    [PMID: 23933884]
  6. propose that the ZHOUPI/ICE1 complex might have ancient origins, acquiring novel megagametophyte-specific functions in heterosporous land plants that were conserved in the angiosperm endosperm
    [PMID: 24553285]
  7. ICE2 gene has originated from a duplication event about 17.9MYA followed by sub- and neofunctionalization of the ancestral ICE1 gene.
    [PMID: 25443829]
  8. uncover the unexpected roles of OST1 in modulating C-repeat-binding factor-dependent cold signaling in Arabidopsis
    [PMID: 25669882]
  9. Seedling growth was severely reduced in a T-DNA insertion mutant of ICE1, ice1-2, when grown on 1/2 MS medium lacking sugars, but was restored to wild-type (WT) levels by supplementation with 56 mM glucose.
    [PMID: 26048037]
  10. unified ICE-CBF pathway provides transcriptional feedback control of freezing tolerance during cold acclimation
    [PMID: 26311645]
  11. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes
    [PMID: 29056551]
  12. that MPK3/MPK6 phosphorylate and destabilize ICE1, which negatively regulates CBF expression and freezing tolerance in plants
    [PMID: 29056553]
  13. Data indicate that light is directly linked with the inducer of CBF Expression (ICE) transcription factors (ICE)-directed signaling module, via the CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-mediated protein surveillance system, in the modulation of stomatal development.
    [PMID: 29070509]
  14. AtICE1 methylation-regulated transcription of CBF pathway genes is responsible for the phenotypic variation in the freezing tolerance observed in A. thaliana.
    [PMID: 30295898]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT3G26744.2
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By high-salt stress, cold stress and abscisic acid (ABA) treatment.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT5G53210 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G42540(A), AT3G23250(R), AT3G61190(A), AT4G25470(A), AT4G25480(A), AT4G25490(A), AT5G52310(A), AT5G53210(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT5G53210, AT1G49770
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G26744
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0790160.0AY079016.1 Arabidopsis thaliana AT3g26744/MLJ15_15 mRNA, complete cds.
GenBankAY1956210.0AY195621.1 Arabidopsis thaliana ICE1 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001030774.10.0basic helix-loop-helix (bHLH) DNA-binding superfamily protein
RefseqNP_001030776.20.0basic helix-loop-helix (bHLH) DNA-binding superfamily protein
RefseqNP_189309.20.0basic helix-loop-helix (bHLH) DNA-binding superfamily protein
SwissprotQ9LSE20.0ICE1_ARATH; Transcription factor ICE1
TrEMBLA0A0D5MF120.0A0A0D5MF12_ARATH; ICE1
TrEMBLA0A384KCX70.0A0A384KCX7_ARATH; SCRM
STRINGAT3G26744.10.0(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Chinnusamy V, et al.
    ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.
    Genes Dev., 2003. 17(8): p. 1043-54
    [PMID:12672693]
  3. Heim MA, et al.
    The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.
    Mol. Biol. Evol., 2003. 20(5): p. 735-47
    [PMID:12679534]
  4. Toledo-Ortiz G,Huq E,Quail PH
    The Arabidopsis basic/helix-loop-helix transcription factor family.
    Plant Cell, 2003. 15(8): p. 1749-70
    [PMID:12897250]
  5. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  6. Chinnusamy V,Schumaker K,Zhu JK
    Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.
    J. Exp. Bot., 2004. 55(395): p. 225-36
    [PMID:14673035]
  7. Lee BH,Henderson DA,Zhu JK
    The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Plant Cell, 2005. 17(11): p. 3155-75
    [PMID:16214899]
  8. Skinner JS, et al.
    Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis.
    Theor. Appl. Genet., 2006. 112(5): p. 832-42
    [PMID:16365758]
  9. Dong CH,Agarwal M,Zhang Y,Xie Q,Zhu JK
    The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(21): p. 8281-6
    [PMID:16702557]
  10. Benedict C,Geisler M,Trygg J,Huner N,Hurry V
    Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis.
    Plant Physiol., 2006. 141(4): p. 1219-32
    [PMID:16896234]
  11. Agarwal M, et al.
    A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance.
    J. Biol. Chem., 2006. 281(49): p. 37636-45
    [PMID:17015446]
  12. Xin Z,Mandaokar A,Chen J,Last RL,Browse J
    Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.
    Plant J., 2007. 49(5): p. 786-99
    [PMID:17316173]
  13. Miura K, et al.
    SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.
    Plant Cell, 2007. 19(4): p. 1403-14
    [PMID:17416732]
  14. Badawi M, et al.
    Structure and functional analysis of wheat ICE (inducer of CBF expression) genes.
    Plant Cell Physiol., 2008. 49(8): p. 1237-49
    [PMID:18635580]
  15. Kanaoka MM, et al.
    SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation.
    Plant Cell, 2008. 20(7): p. 1775-85
    [PMID:18641265]
  16. Wang Y, et al.
    Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis.
    Plant Physiol., 2008. 148(3): p. 1201-11
    [PMID:18775970]
  17. Fursova OV,Pogorelko GV,Tarasov VA
    Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana.
    Gene, 2009. 429(1-2): p. 98-103
    [PMID:19026725]
  18. Serna L
    Emerging parallels between stomatal and muscle cell lineages.
    Plant Physiol., 2009. 149(4): p. 1625-31
    [PMID:19201912]
  19. Lippold F, et al.
    AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis.
    Plant Physiol., 2009. 149(4): p. 1761-72
    [PMID:19211694]
  20. Zhou J, et al.
    Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis.
    J. Plant Physiol., 2009. 166(12): p. 1296-306
    [PMID:19324458]
  21. Serna L
    Cell fate transitions during stomatal development.
    Bioessays, 2009. 31(8): p. 865-73
    [PMID:19565615]
  22. Miura K,Hasegawa PM
    Regulation of cold signaling by sumoylation of ICE1.
    Plant Signal Behav, 2008. 3(1): p. 52-3
    [PMID:19704769]
  23. Miura K,Ohta M
    SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation.
    J. Plant Physiol., 2010. 167(7): p. 555-60
    [PMID:19959255]
  24. Peterson KM,Rychel AL,Torii KU
    Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development.
    Plant Cell, 2010. 22(2): p. 296-306
    [PMID:20179138]
  25. Chinnusamy V,Zhu JK,Sunkar R
    Gene regulation during cold stress acclimation in plants.
    Methods Mol. Biol., 2010. 639: p. 39-55
    [PMID:20387039]
  26. Chen CC,Liang CS,Kao AL,Yang CC
    HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis.
    J. Exp. Bot., 2010. 61(12): p. 3305-20
    [PMID:20566565]
  27. Elrouby N,Coupland G
    Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(40): p. 17415-20
    [PMID:20855607]
  28. Yang W, et al.
    Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways.
    Planta, 2011. 233(2): p. 219-29
    [PMID:20967459]
  29. Zhu Y,Yang H,Mang HG,Hua J
    Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis.
    Plant Physiol., 2011. 155(1): p. 580-8
    [PMID:21098676]
  30. Miura K,Ohta M,Nakazawa M,Ono M,Hasegawa PM
    ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance.
    Plant J., 2011. 67(2): p. 269-79
    [PMID:21447070]
  31. Siddiqua M,Nassuth A
    Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression.
    Plant Cell Environ., 2011. 34(8): p. 1345-59
    [PMID:21486303]
  32. Pillitteri LJ,Peterson KM,Horst RJ,Torii KU
    Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis.
    Plant Cell, 2011. 23(9): p. 3260-75
    [PMID:21963668]
  33. Bruex A, et al.
    A gene regulatory network for root epidermis cell differentiation in Arabidopsis.
    PLoS Genet., 2012. 8(1): p. e1002446
    [PMID:22253603]
  34. Xie C, et al.
    Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density.
    New Phytol., 2012. 195(1): p. 124-35
    [PMID:22510066]
  35. Lee JH, et al.
    The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana.
    Plant Cell Physiol., 2012. 53(10): p. 1802-14
    [PMID:22960247]
  36. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
    [PMID:22995285]
  37. Lee JH,Kim SH,Kim JJ,Ahn JH
    Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis.
    BMB Rep, 2012. 45(9): p. 515-20
    [PMID:23010172]
  38. Arisz SA, et al.
    Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase.
    Front Plant Sci, 2013. 4: p. 1
    [PMID:23346092]
  39. Hu Y,Jiang L,Wang F,Yu D
    Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis.
    Plant Cell, 2013. 25(8): p. 2907-24
    [PMID:23933884]
  40. Jung JH, et al.
    The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis.
    Plant Cell, 2013. 25(11): p. 4378-90
    [PMID:24220632]
  41. Chen Y, et al.
    Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.
    BMC Biol., 2013. 11: p. 121
    [PMID:24350981]
  42. Denay G, et al.
    Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1.
    Development, 2014. 141(6): p. 1222-7
    [PMID:24553285]
  43. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  44. Kurbidaeva A,Ezhova T,Novokreshchenova M
    Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1.
    Plant Sci., 2014. 229: p. 10-22
    [PMID:25443829]
  45. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  46. Ding Y, et al.
    OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis.
    Dev. Cell, 2015. 32(3): p. 278-89
    [PMID:25669882]
  47. Lang Z,Zhu J
    OST1 phosphorylates ICE1 to enhance plant cold tolerance.
    Sci China Life Sci, 2015. 58(3): p. 317-8
    [PMID:25680856]
  48. Juan JX, et al.
    Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.
    Genet. Mol. Res., 2015. 14(1): p. 597-608
    [PMID:25729995]
  49. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  50. Lee HG,Seo PJ
    The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis.
    Plant J., 2015. 82(6): p. 962-77
    [PMID:25912720]
  51. Liang CH,Yang CC
    Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis.
    Plant Mol. Biol., 2015. 88(4-5): p. 459-70
    [PMID:26048037]
  52. Horst RJ, et al.
    Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage.
    PLoS Genet., 2015. 11(7): p. e1005374
    [PMID:26203655]
  53. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  54. Kim YS,Lee M,Lee JH,Lee HJ,Park CM
    The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis.
    Plant Mol. Biol., 2015. 89(1-2): p. 187-201
    [PMID:26311645]
  55. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  56. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  57. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  58. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  59. Chen L, et al.
    NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.
    Development, 2016. 143(9): p. 1600-11
    [PMID:26989174]
  60. Lu X, et al.
    A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 113: p. 78-88
    [PMID:28189052]
  61. Deng C,Ye H,Fan M,Pu T,Yan J
    The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1316442
    [PMID:28414264]
  62. de Marcos A, et al.
    A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    Plant Physiol., 2017. 174(2): p. 823-842
    [PMID:28507175]
  63. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  64. Pal S, et al.
    TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.
    Plant Physiol., 2017. 175(2): p. 916-926
    [PMID:28827455]
  65. Zhao C, et al.
    MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.
    Dev. Cell, 2017. 43(5): p. 618-629.e5
    [PMID:29056551]
  66. Li H, et al.
    MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.
    Dev. Cell, 2017. 43(5): p. 630-642.e4
    [PMID:29056553]
  67. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  68. Liu Y,Zhou J
    MAPping Kinase Regulation of ICE1 in Freezing Tolerance.
    Trends Plant Sci., 2018. 23(2): p. 91-93
    [PMID:29248419]
  69. Xie H, et al.
    Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana.
    Plant Cell Physiol., 2019. 60(1): p. 152-165
    [PMID:30295898]