PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G24650.1
Common NameABI3, MSD24.2, SIS10
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family B3
Protein Properties Length: 720aa    MW: 79500.4 Da    PI: 5.0512
Description B3 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G24650.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1B363.72.8e-20573669295
                  EEE-..-HHHHTT-EE--HHH.HTT..---..--SEEEEEE.TTS-EEEEEE....EEETTEEEE-TTHHHHHHHHT--TT-EEEEEE-SS.SEE..E CS
           B3   2 fkvltpsdvlksgrlvlpkkfaeeh..ggkkeesktltled.esgrsWevkliy..rkksgryvltkGWkeFvkangLkegDfvvFkldgr.sefelv 93 
                  +kvl++sdv+++gr+vlpkk ae+h  +++ + ++ l +ed  ++r+W++++++  ++ks++y+l+ ++ +Fvk ngL+egDf+v++  ++ ++++++
  AT3G24650.1 573 QKVLKQSDVGNLGRIVLPKKEAETHlpELEARDGISLAMEDiGTSRVWNMRYRFwpNNKSRMYLLE-NTGDFVKTNGLQEGDFIVIY--SDvKCGKYL 667
                  79*************************999999********7778*******99777777777777.********************..555999887 PP

                  EE CS
           B3  94 vk 95 
                  ++
  AT3G24650.1 668 IR 669
                  76 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:2.40.330.104.2E-28567677IPR015300DNA-binding pseudobarrel domain
CDDcd100152.66E-38570671No hitNo description
SuperFamilySSF1019362.55E-22571666IPR015300DNA-binding pseudobarrel domain
PROSITE profilePS5086310.602572674IPR003340B3 DNA binding domain
SMARTSM010195.6E-19572674IPR003340B3 DNA binding domain
PfamPF023623.1E-16573668IPR003340B3 DNA binding domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006357Biological Processregulation of transcription from RNA polymerase II promoter
GO:0009657Biological Processplastid organization
GO:0009733Biological Processresponse to auxin
GO:0009737Biological Processresponse to abscisic acid
GO:0009738Biological Processabscisic acid-activated signaling pathway
GO:0009793Biological Processembryo development ending in seed dormancy
GO:0031930Biological Processmitochondria-nucleus signaling pathway
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0005829Cellular Componentcytosol
GO:0001076Molecular Functiontranscription factor activity, RNA polymerase II transcription factor binding
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009088anatomyseed coat
PO:0020121anatomylateral root
PO:0001040developmental stagedry seed stage
PO:0007632developmental stageseed maturation stage
Sequence ? help Back to Top
Protein Sequence    Length: 720 aa     Download sequence    Send to blast
MKSLHVAANA GDLAEDCGIL GGDADDTVLM DGIDEVGREI WLDDHGGDNN HVHGHQDDDL  60
IVHHDPSIFY GDLPTLPDFP CMSSSSSSST SPAPVNAIVS SASSSSAASS STSSAASWAI  120
LRSDGEDPTP NQNQYASGNC DDSSGALQST ASMEIPLDSS QGFGCGEGGG DCIDMMETFG  180
YMDLLDSNEF FDTSAIFSQD DDTQNPNLMD QTLERQEDQV VVPMMENNSG GDMQMMNSSL  240
EQDDDLAAVF LEWLKNNKET VSAEDLRKVK IKKATIESAA RRLGGGKEAM KQLLKLILEW  300
VQTNHLQRRR TTTTTTNLSY QQSFQQDPFQ NPNPNNNNLI PPSDQTCFSP STWVPPPPQQ  360
QAFVSDPGFG YMPAPNYPPQ PEFLPLLESP PSWPPPPQSG PMPHQQFPMP PTSQYNQFGD  420
PTGFNGYNMN PYQYPYVPAG QMRDQRLLRL CSSATKEARK KRMARQRRFL SHHHRHNNNN  480
NNNNNNQQNQ TQIGETCAAV APQLNPVATT ATGGTWMYWP NVPAVPPQLP PVMETQLPTM  540
DRAGSASAMP RQQVVPDRRQ GWKPEKNLRF LLQKVLKQSD VGNLGRIVLP KKEAETHLPE  600
LEARDGISLA MEDIGTSRVW NMRYRFWPNN KSRMYLLENT GDFVKTNGLQ EGDFIVIYSD  660
VKCGKYLIRG VKVRQPSGQK PEAPPSSAAT KRQNKSQRNI NNNSPSANVV VASPTSQTVK
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
6j9b_A7e-375686751108B3 domain-containing transcription factor FUS3
6j9b_D7e-375686751108B3 domain-containing transcription factor FUS3
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.199590.0seed
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible256898_at0.0
Expression AtlasAT3G24650-
AtGenExpressAT3G24650-
ATTED-IIAT3G24650-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed in the embryos, endosperm, and outer teguments of the seed throughout seed development. {ECO:0000269|PubMed:12657652}.
UniprotTISSUE SPECIFICITY: Isoform 2 accumulates only at the end of seed maturation. {ECO:0000269|PubMed:20525852}.
Functional Description ? help Back to Top
Source Description
TAIRHomologous to the maize transcription factor Viviparous-1. Full length ABI3 protein binds to the highly conserved RY motif [DNA motif CATGCA(TG)], present in many seed-specific promoters, and the B3 domains of this transcription factor is necessary for the specific interaction with the RY element. Transcriptional activity of ABI3 requires the B3 DNA-binding domain and an activation domain. In addition to the known N-terminal-located activation domain, a second transcription activation domain was found in the B1 region of ABI3. ABI3 is essential for seed maturation. Regulator of the transition between embryo maturation and early seedling development. Putative seed-specific transcriptional activator. Mutants exhibit decreased responsiveness to ABA suggesting that ABI3 protein participates in the ABA perception/transduction cascade. Based on double mutant analyses, ABI3 interacts genetically with both FUS3 and LEC1 and is involved in controlling accumulation of chlorophyll and anthocyanins, sensitivity to abscisic acid, and expression of the members of the 12S storage protein gene family. In addition, both FUS3 and LEC1 regulate positively the abundance of the ABI3 protein in the seed. Alternative splicing of ABI3 is developmentally regulated by SUA (AT3G54230).
UniProtParticipates in abscisic acid-regulated gene expression during seed development. Regulates the transcription of SGR1 and SGR2 that are involved in leaf and embryo degreening. {ECO:0000269|PubMed:19531597, ECO:0000269|PubMed:24043799}.
Function -- GeneRIF ? help Back to Top
  1. We suggest that LEC1 controls the expression of the SSP genes in a hierarchical manner, which involves ABI3 and FUS3.
    [PMID: 15695450]
  2. Double-mutant analysis showed that ABA-insensitive 4 (ABI4) is epistatic to AtLPP2 but ABA-insensitive 3 (ABI3) is not.
    [PMID: 15960620]
  3. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed
    [PMID: 16463099]
  4. ABI3 expression ceases following the completion of germination in both tomato and Arabidopsis seeds, suggesting that expression of this gene does not regulate germination.
    [PMID: 16531465]
  5. ABSCISIC ACID-INSENSITIVE3 (ABI3) regulates the developmental expression of HsfA9.
    [PMID: 17220197]
  6. PRT6 control of germination and establishment, as exemplified by ABA and sugar sensitivity, as well as storage oil mobilization, occurs at least in part via transcription factors ABI3 and ABI5.
    [PMID: 19255443]
  7. We show that repression of germination by far-red light involves stabilized DELLA factors GAI, RGA and RGL2 that stimulate endogenous abscisic acid synthesis which, in turn, blocks germination through the transcription factor ABI3.
    [PMID: 19556968]
  8. ABI3 and PIL5 collaboratively activate the expression of SOM mRNA by directly binding to and interacting with each other at the SOM promoter.
    [PMID: 21467583]
  9. N-acylethanolamines may act to inhibit early seedling establishment by both ABI3-dependent and ABI3-independent pathways.
    [PMID: 21633189]
  10. Identification of a set of 98 genes forming a basic ABI3 regulon.
    [PMID: 22730287]
  11. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis.
    [PMID: 23986496]
  12. ABI3 controls embryo degreening through Mendel's I locus.
    [PMID: 24043799]
  13. The function of AtSAG in abscisic acid (ABA)signalling depended on ABI3 and ABI5. AtSAG is an important negative regulator of ABA signalling during seed germination and seedling development.
    [PMID: 24163287]
  14. The BES1-TPL-HDA19 repressor complex controls epigenetic silencing of ABI3 and thereby suppresses the abscisic acid signalling output during early seedling development.
    [PMID: 24938150]
  15. WRKY41 is an important regulator of ABI3 expression, and hence of seed dormancy.
    [PMID: 24946881]
  16. RAV1 plays an important role in abscisic acid signaling by modulating the expression of ABI3, ABI4, and AbI5 during seed germination and early seedling development.
    [PMID: 25231920]
  17. This study examined the role of ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3) and LEAFY COTYLEDON2 (LEC2), in the production of seed reserves in Arabidopsis.
    [PMID: 25840088]
  18. TIP3;1 and TIP3;2 promoters could be activated by ABI3 in the presence of abscisic acid (ABA) in Arabidopsis protoplasts. TIP3 proteins were detected in protoplasts transiently expressing ABI3 and in ABI3-overexpressing seedlings treated with ABA.
    [PMID: 26019256]
  19. AIP1 interacts with ABAP1, with a plant histone modification "reader" (LHP1) and with non modified histones. Also, expression of ABAP1 and LHP1 target genes were repressed in flower buds of plants with reduced levels of AIP1.
    [PMID: 26538092]
  20. The abi3-1 dog1-1 double mutant produced green seeds which are highly abscisic acid (ABA) insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes.
    [PMID: 26729600]
  21. ABI3 mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase.
    [PMID: 27457990]
  22. Genetic and epigenetic essentials required for expression of the ABI3 gene, a crucial factor regulating dehydration stress signalling in Arabidopsis thaliana.
    [PMID: 30019436]
  23. data suggest that BES1-mediated regulation of ABI3 is important in the reproductive phase transition of plants.
    [PMID: 30908972]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00083PBM26531826Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT3G24650.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Repressed by silencing mediated by polycomb group (PcG) protein complex containing EMF1 and EMF2. {ECO:0000269|PubMed:19783648}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G21970 (A), AT1G28300 (A), AT1G54060 (R), AT2G20180 (A), AT2G40220 (A), AT3G03450 (A), AT3G24650 (A), AT3G26790 (A), AT3G54320 (R), AT5G56270 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G03790(A), AT1G45249(R), AT1G69180(A), AT2G36270(A), AT2G40170(A), AT3G03450(A), AT3G06120(A), AT3G11410(A), AT3G19290(R), AT3G22370(A), AT3G24650(A), AT3G26790(A), AT3G51810(A), AT4G16160(A), AT4G27140(A), AT4G27160(A), AT4G34000(R), AT5G03840(A), AT5G52310(A), AT5G54070(A), AT5G56270(A), AT5G65165(A), AT5G66400(A), AT5G67030(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDabscisic acid, auxin
Interaction ? help Back to Top
Source Intact With
BioGRIDAT3G54620, AT4G02640, AT5G15840, AT1G14920
IntActSearch Q01593
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G24650
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankX681410.0X68141.1 A.thaliana mRNA for ABI3 protein.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_189108.10.0AP2/B3-like transcriptional factor family protein
SwissprotQ015930.0ABI3_ARATH; B3 domain-containing transcription factor ABI3
TrEMBLA0A178VFQ90.0A0A178VFQ9_ARATH; SIS10
STRINGAT3G24650.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM102802531
Representative plantOGRP7881766
Publications ? help Back to Top
  1. Prieto-Dapena P,Almoguera C,Rojas A,Jordano J
    Seed-specific expression patterns and regulation by ABI3 of an unusual late embryogenesis-abundant gene in sunflower.
    Plant Mol. Biol., 1999. 39(3): p. 615-27
    [PMID:10092187]
  2. Arenas-Mena C, et al.
    Expression and cellular localization of Atrab28 during arabidopsis embryogenesis.
    Plant Mol. Biol., 1999. 40(2): p. 355-63
    [PMID:10412913]
  3. Yoshiba Y,Nanjo T,Miura S,Yamaguchi-Shinozaki K,Shinozaki K
    Stress-responsive and developmental regulation of Delta(1)-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 1999. 261(3): p. 766-72
    [PMID:10441499]
  4. Bies-Etheve N, et al.
    Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation.
    Plant Mol. Biol., 1999. 40(6): p. 1045-54
    [PMID:10527428]
  5. Söderman E,Hjellström M,Fahleson J,Engström P
    The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions.
    Plant Mol. Biol., 1999. 40(6): p. 1073-83
    [PMID:10527431]
  6. Rohde A, et al.
    Carpel, a new Arabidopsis epi-mutant of the SUPERMAN gene: phenotypic analysis and DNA methylation status.
    Plant Cell Physiol., 1999. 40(9): p. 961-72
    [PMID:10588067]
  7. Rohde A, et al.
    ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings.
    Plant Cell, 2000. 12(1): p. 35-52
    [PMID:10634906]
  8. Rojas A,Almoguera C,Jordano J
    Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors.
    Plant J., 1999. 20(5): p. 601-10
    [PMID:10652132]
  9. Jones HD,Kurup S,Peters NC,Holdsworth MJ
    Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1.
    Plant J., 2000. 21(2): p. 133-42
    [PMID:10743654]
  10. Kurup S,Jones HD,Holdsworth MJ
    Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds.
    Plant J., 2000. 21(2): p. 143-55
    [PMID:10743655]
  11. Nambara E, et al.
    The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination.
    Dev. Biol., 2000. 220(2): p. 412-23
    [PMID:10753527]
  12. Reidt W, et al.
    Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product.
    Plant J., 2000. 21(5): p. 401-8
    [PMID:10758492]
  13. Wehmeyer N,Vierling E
    The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance.
    Plant Physiol., 2000. 122(4): p. 1099-108
    [PMID:10759505]
  14. Chandler J,Martinez-Zapater JM,Dean C
    Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca-1.
    Planta, 2000. 210(4): p. 677-82
    [PMID:10787063]
  15. Crowe AJ, Abenes M, Plant A, Moloney MM
    The seed-specific transactivator, ABI3, induces oleosin gene expression.
    Plant Sci., 2000. 151(2): p. 171-181
    [PMID:10808073]
  16. Vicient CM,Hull G,Guilleminot J,Devic M,Delseny M
    Differential expression of the Arabidopsis genes coding for Em-like proteins.
    J. Exp. Bot., 2000. 51(348): p. 1211-20
    [PMID:10937696]
  17. Makino S, et al.
    Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana.
    Plant Cell Physiol., 2000. 41(6): p. 791-803
    [PMID:10945350]
  18. Vicient CM,Bies-Etheve N,Delseny M
    Changes in gene expression in the leafy cotyledon1 (lec1) and fusca3 (fus3) mutants of Arabidopsis thaliana L.
    J. Exp. Bot., 2000. 51(347): p. 995-1003
    [PMID:10948227]
  19. Arenas-Huertero F,Arroyo A,Zhou L,Sheen J,León P
    Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar.
    Genes Dev., 2000. 14(16): p. 2085-96
    [PMID:10950871]
  20. Laby RJ,Kincaid MS,Kim D,Gibson SI
    The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response.
    Plant J., 2000. 23(5): p. 587-96
    [PMID:10972885]
  21. Riechmann JL,Ratcliffe OJ
    A genomic perspective on plant transcription factors.
    Curr. Opin. Plant Biol., 2000. 3(5): p. 423-34
    [PMID:11019812]
  22. Ezcurra I,Wycliffe P,Nehlin L,Ellerstr
    Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box.
    Plant J., 2000. 24(1): p. 57-66
    [PMID:11029704]
  23. S
    Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks.
    Plant Physiol., 2000. 124(4): p. 1752-65
    [PMID:11115891]
  24. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  25. Raz V,Bergervoet JH,Koornneef M
    Sequential steps for developmental arrest in Arabidopsis seeds.
    Development, 2001. 128(2): p. 243-52
    [PMID:11124119]
  26. Tamminen I,M
    Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana.
    Plant J., 2001. 25(1): p. 1-8
    [PMID:11169177]
  27. Vicient CM,Gruber V,Delseny M
    The Arabidopsis AtEm1 promoter is active in Brassica napus L. and is temporally and spatially regulated.
    J. Exp. Bot., 2001. 52(360): p. 1587-91
    [PMID:11457920]
  28. Nakamura S,Lynch TJ,Finkelstein RR
    Physical interactions between ABA response loci of Arabidopsis.
    Plant J., 2001. 26(6): p. 627-35
    [PMID:11489176]
  29. Hong SW,Vierling E
    Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress.
    Plant J., 2001. 27(1): p. 25-35
    [PMID:11489180]
  30. Despres B,Delseny M,Devic M
    Partial complementation of embryo defective mutations: a general strategy to elucidate gene function.
    Plant J., 2001. 27(2): p. 149-59
    [PMID:11489192]
  31. Suzuki M,Kao CY,Cocciolone S,McCarty DR
    Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots.
    Plant J., 2001. 28(4): p. 409-18
    [PMID:11737778]
  32. Signora L,De Smet I,Foyer CH,Zhang H
    ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis.
    Plant J., 2001. 28(6): p. 655-62
    [PMID:11851911]
  33. Carles C, et al.
    Regulation of Arabidopsis thaliana Em genes: role of ABI5.
    Plant J., 2002. 30(3): p. 373-83
    [PMID:12000684]
  34. Ikeda-Iwai M,Satoh S,Kamada H
    Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos.
    J. Exp. Bot., 2002. 53(374): p. 1575-80
    [PMID:12096096]
  35. Nambara E, et al.
    A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana.
    Genetics, 2002. 161(3): p. 1247-55
    [PMID:12136027]
  36. Rohde A, et al.
    PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar.
    Plant Cell, 2002. 14(8): p. 1885-901
    [PMID:12172029]
  37. Brocard IM,Lynch TJ,Finkelstein RR
    Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response.
    Plant Physiol., 2002. 129(4): p. 1533-43
    [PMID:12177466]
  38. Ooms J,Leon-Kloosterziel KM,Bartels D,Koornneef M,Karssen CM
    Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3 Mutants).
    Plant Physiol., 1993. 102(4): p. 1185-1191
    [PMID:12231895]
  39. Naito S,Hirai MY,Chino M,Komeda Y
    Expression of a Soybean (Glycine max [L.] Merr.) Seed Storage Protein Gene in Transgenic Arabidopsis thaliana and Its Response to Nutritional Stress and to Abscisic Acid Mutations.
    Plant Physiol., 1994. 104(2): p. 497-503
    [PMID:12232098]
  40. Vartanian N,Marcotte L,Giraudat J
    Drought Rhizogenesis in Arabidopsis thaliana (Differential Responses of Hormonal Mutants).
    Plant Physiol., 1994. 104(2): p. 761-767
    [PMID:12232124]
  41. Meinke DW,Franzmann LH,Nickle TC,Yeung EC
    Leafy Cotyledon Mutants of Arabidopsis.
    Plant Cell, 1994. 6(8): p. 1049-1064
    [PMID:12244265]
  42. Lopez-Molina L,Mongrand S,McLachlin DT,Chait BT,Chua NH
    ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination.
    Plant J., 2002. 32(3): p. 317-28
    [PMID:12410810]
  43. Brocard-Gifford IM,Lynch TJ,Finkelstein RR
    Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling.
    Plant Physiol., 2003. 131(1): p. 78-92
    [PMID:12529517]
  44. Lara P, et al.
    Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2.
    J. Biol. Chem., 2003. 278(23): p. 21003-11
    [PMID:12657652]
  45. Brady SM,Sarkar SF,Bonetta D,McCourt P
    The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis.
    Plant J., 2003. 34(1): p. 67-75
    [PMID:12662310]
  46. Ikeda-Iwai M,Umehara M,Satoh S,Kamada H
    Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana.
    Plant J., 2003. 34(1): p. 107-14
    [PMID:12662313]
  47. Johannesson H,Wang Y,Hanson J,Engström P
    The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings.
    Plant Mol. Biol., 2003. 51(5): p. 719-29
    [PMID:12678559]
  48. Clerkx EJ,Vries HB,Ruys GJ,Groot SP,Koornneef M
    Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity.
    Plant Physiol., 2003. 132(2): p. 1077-84
    [PMID:12805635]
  49. Suzuki M,Ketterling MG,Li QB,McCarty DR
    Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling.
    Plant Physiol., 2003. 132(3): p. 1664-77
    [PMID:12857845]
  50. Arroyo A,Bossi F,Finkelstein RR,Le
    Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis.
    Plant Physiol., 2003. 133(1): p. 231-42
    [PMID:12970489]
  51. Giraudat J, et al.
    Isolation of the Arabidopsis ABI3 gene by positional cloning.
    Plant Cell, 1992. 4(10): p. 1251-61
    [PMID:1359917]
  52. Kroj T,Savino G,Valon C,Giraudat J,Parcy F
    Regulation of storage protein gene expression in Arabidopsis.
    Development, 2003. 130(24): p. 6065-73
    [PMID:14597573]
  53. Baumbusch LO,Hughes DW,Galau GA,Jakobsen KS
    LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis.
    J. Exp. Bot., 2004. 55(394): p. 77-87
    [PMID:14676287]
  54. Brocard-Gifford I,Lynch TJ,Garcia ME,Malhotra B,Finkelstein RR
    The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth.
    Plant Cell, 2004. 16(2): p. 406-21
    [PMID:14742875]
  55. Haslek
    ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress.
    Plant Mol. Biol., 2003. 53(3): p. 313-26
    [PMID:14750521]
  56. Mönke G, et al.
    Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA.
    Planta, 2004. 219(1): p. 158-66
    [PMID:14767767]
  57. Ng DW,Chandrasekharan MB,Hall TC
    The 5' UTR negatively regulates quantitative and spatial expression from the ABI3 promoter.
    Plant Mol. Biol., 2004. 54(1): p. 25-38
    [PMID:15159632]
  58. Kagaya Y, et al.
    LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3.
    Plant Cell Physiol., 2005. 46(3): p. 399-406
    [PMID:15695450]
  59. Kagaya Y, et al.
    Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis.
    Plant Cell Physiol., 2005. 46(2): p. 300-11
    [PMID:15695463]
  60. Zeng Y,Kermode AR
    A gymnosperm ABI3 gene functions in a severe abscisic acid-insensitive mutant of Arabidopsis (abi3-6) to restore the wild-type phenotype and demonstrates a strong synergistic effect with sugar in the inhibition of post-germinative growth.
    Plant Mol. Biol., 2004. 56(5): p. 731-46
    [PMID:15803411]
  61. Tsukagoshi H,Saijo T,Shibata D,Morikami A,Nakamura K
    Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor.
    Plant Physiol., 2005. 138(2): p. 675-85
    [PMID:15894743]
  62. Katagiri T, et al.
    An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana.
    Plant J., 2005. 43(1): p. 107-17
    [PMID:15960620]
  63. Zhang X,Garreton V,Chua NH
    The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation.
    Genes Dev., 2005. 19(13): p. 1532-43
    [PMID:15998807]
  64. Mazzella MA, et al.
    Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light.
    Plant Cell, 2005. 17(9): p. 2507-16
    [PMID:16024587]
  65. Santos Mendoza M,Dubreucq B,Miquel M,Caboche M,Lepiniec L
    LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves.
    FEBS Lett., 2005. 579(21): p. 4666-70
    [PMID:16107256]
  66. Suzuki M,Ketterling MG,McCarty DR
    Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.
    Plant Physiol., 2005. 139(1): p. 437-47
    [PMID:16113229]
  67. Verslues PE,Bray EA
    Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation.
    J. Exp. Bot., 2006. 57(1): p. 201-12
    [PMID:16339784]
  68. Yoshida T, et al.
    ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs.
    Plant Physiol., 2006. 140(1): p. 115-26
    [PMID:16339800]
  69. He XJ, et al.
    AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development.
    Plant J., 2005. 44(6): p. 903-16
    [PMID:16359384]
  70. Nakashima K, et al.
    Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.
    Plant Mol. Biol., 2006. 60(1): p. 51-68
    [PMID:16463099]
  71. Bassel GW,Mullen RT,Bewley JD
    ABI3 expression ceases following, but not during, germination of tomato and Arabidopsis seeds.
    J. Exp. Bot., 2006. 57(6): p. 1291-7
    [PMID:16531465]
  72. Cernac A,Andre C,Hoffmann-Benning S,Benning C
    WRI1 is required for seed germination and seedling establishment.
    Plant Physiol., 2006. 141(2): p. 745-57
    [PMID:16632590]
  73. Finkelstein RR,Somerville CR
    Three Classes of Abscisic Acid (ABA)-Insensitive Mutations of Arabidopsis Define Genes that Control Overlapping Subsets of ABA Responses.
    Plant Physiol., 1990. 94(3): p. 1172-9
    [PMID:16667813]
  74. Drea SC,Lao NT,Wolfe KH,Kavanagh TA
    Gene duplication, exon gain and neofunctionalization of OEP16-related genes in land plants.
    Plant J., 2006. 46(5): p. 723-35
    [PMID:16709189]
  75. To A, et al.
    A network of local and redundant gene regulation governs Arabidopsis seed maturation.
    Plant Cell, 2006. 18(7): p. 1642-51
    [PMID:16731585]
  76. Marella HH,Sakata Y,Quatrano RS
    Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens.
    Plant J., 2006. 46(6): p. 1032-44
    [PMID:16805735]
  77. Tamura N, et al.
    Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana.
    Plant Cell Physiol., 2006. 47(8): p. 1081-94
    [PMID:16816409]
  78. Penfield S,Li Y,Gilday AD,Graham S,Graham IA
    Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm.
    Plant Cell, 2006. 18(8): p. 1887-99
    [PMID:16844907]
  79. Yuan K,Wysocka-Diller J
    Phytohormone signalling pathways interact with sugars during seed germination and seedling development.
    J. Exp. Bot., 2006. 57(12): p. 3359-67
    [PMID:16916886]
  80. Marella HH,Quatrano RS
    The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation.
    Planta, 2007. 225(4): p. 863-72
    [PMID:16977453]
  81. Garcion C, et al.
    AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis.
    Plant J., 2006. 48(6): p. 895-906
    [PMID:17092312]
  82. Benschop JJ, et al.
    Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis.
    Plant Physiol., 2007. 143(2): p. 1013-23
    [PMID:17158582]
  83. Suzuki M,Wang HH,McCarty DR
    Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes.
    Plant Physiol., 2007. 143(2): p. 902-11
    [PMID:17158584]
  84. Cao X, et al.
    Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize.
    Plant Physiol., 2007. 143(2): p. 720-31
    [PMID:17208960]
  85. Reyes JL,Chua NH
    ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination.
    Plant J., 2007. 49(4): p. 592-606
    [PMID:17217461]
  86. Kotak S,Vierling E,Bäumlein H,von Koskull-Döring P
    A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis.
    Plant Cell, 2007. 19(1): p. 182-95
    [PMID:17220197]
  87. Uhrig JF, et al.
    The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis.
    Development, 2007. 134(5): p. 967-77
    [PMID:17267444]
  88. Ehrenreich IM,Stafford PA,Purugganan MD
    The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping.
    Genetics, 2007. 176(2): p. 1223-36
    [PMID:17435248]
  89. Nishimura N, et al.
    ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed.
    Plant J., 2007. 50(6): p. 935-49
    [PMID:17461784]
  90. Wang H,Guo J,Lambert KN,Lin Y
    Developmental control of Arabidopsis seed oil biosynthesis.
    Planta, 2007. 226(3): p. 773-83
    [PMID:17522888]
  91. Ruttink T, et al.
    A molecular timetable for apical bud formation and dormancy induction in poplar.
    Plant Cell, 2007. 19(8): p. 2370-90
    [PMID:17693531]
  92. del Viso F,Casaretto JA,Quatrano RS
    14-3-3 Proteins are components of the transcription complex of the ATEM1 promoter in Arabidopsis.
    Planta, 2007. 227(1): p. 167-75
    [PMID:17701425]
  93. Teaster ND, et al.
    N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings.
    Plant Cell, 2007. 19(8): p. 2454-69
    [PMID:17766402]
  94. Perruc E,Kinoshita N,Lopez-Molina L
    The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination.
    Plant J., 2007. 52(5): p. 927-36
    [PMID:17892443]
  95. Tanaka M,Kikuchi A,Kamada H
    The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination.
    Plant Physiol., 2008. 146(1): p. 149-61
    [PMID:18024558]
  96. Schallau A, et al.
    Phylogenetic footprints in fern spore- and seed-specific gene promoters.
    Plant J., 2008. 53(3): p. 414-24
    [PMID:18086283]
  97. Chung S,Parish RW
    Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold.
    Plant J., 2008. 54(1): p. 15-29
    [PMID:18088305]
  98. Liu PF,Chang WC,Wang YK,Chang HY,Pan RL
    Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid.
    Biochim. Biophys. Acta, 2008. 1779(3): p. 164-74
    [PMID:18179780]
  99. Bies-Eth
    Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana.
    Plant Mol. Biol., 2008. 67(1-2): p. 107-24
    [PMID:18265943]
  100. Dekkers BJ,Schuurmans JA,Smeekens SC
    Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis.
    Plant Mol. Biol., 2008. 67(1-2): p. 151-67
    [PMID:18278579]
  101. Prieto-Dapena P,Casta
    The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs.
    Plant J., 2008. 54(6): p. 1004-14
    [PMID:18315542]
  102. Shobbar ZS, et al.
    Abscisic acid regulates gene expression in cortical fiber cells and silica cells of rice shoots.
    New Phytol., 2008. 178(1): p. 68-79
    [PMID:18315698]
  103. Papdi C, et al.
    Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system.
    Plant Physiol., 2008. 147(2): p. 528-42
    [PMID:18441225]
  104. Santos-Mendoza M, et al.
    Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis.
    Plant J., 2008. 54(4): p. 608-20
    [PMID:18476867]
  105. Kim DH, et al.
    SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5.
    Plant Cell, 2008. 20(5): p. 1260-77
    [PMID:18487351]
  106. Samuel MA, et al.
    Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis.
    Plant Physiol., 2008. 147(4): p. 2084-95
    [PMID:18552232]
  107. Huang Y,Li CY,Biddle KD,Gibson SI
    Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis.
    BMC Plant Biol., 2008. 8: p. 104
    [PMID:18854047]
  108. Swaminathan K,Peterson K,Jack T
    The plant B3 superfamily.
    Trends Plant Sci., 2008. 13(12): p. 647-55
    [PMID:18986826]
  109. Gao MJ, et al.
    Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings.
    Plant Cell, 2009. 21(1): p. 54-71
    [PMID:19155348]
  110. Ding Z, et al.
    Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana.
    J Genet Genomics, 2009. 36(1): p. 17-29
    [PMID:19161942]
  111. Oh E, et al.
    Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis.
    Plant Cell, 2009. 21(2): p. 403-19
    [PMID:19244139]
  112. Holman TJ, et al.
    The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(11): p. 4549-54
    [PMID:19255443]
  113. Roschzttardtz H, et al.
    A nuclear gene encoding the iron-sulfur subunit of mitochondrial complex II is regulated by B3 domain transcription factors during seed development in Arabidopsis.
    Plant Physiol., 2009. 150(1): p. 84-95
    [PMID:19261733]
  114. Bu Q, et al.
    The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development.
    Plant Physiol., 2009. 150(1): p. 463-81
    [PMID:19286935]
  115. Seifert M,Keilwagen J,Strickert M,Grosse I
    Utilizing gene pair orientations for HMM-based analysis of promoter array ChIP-chip data.
    Bioinformatics, 2009. 25(16): p. 2118-25
    [PMID:19401402]
  116. Giraud E,Van Aken O,Ho LH,Whelan J
    The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a.
    Plant Physiol., 2009. 150(3): p. 1286-96
    [PMID:19482916]
  117. Romanel EA,Schrago CG,Cou
    Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.
    PLoS ONE, 2009. 4(6): p. e5791
    [PMID:19503786]
  118. Alonso R, et al.
    A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation.
    Plant Cell, 2009. 21(6): p. 1747-61
    [PMID:19531597]
  119. Nakashima K, et al.
    Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy.
    Plant Cell Physiol., 2009. 50(7): p. 1345-63
    [PMID:19541597]
  120. Piskurewicz U,Turecková V,Lacombe E,Lopez-Molina L
    Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity.
    EMBO J., 2009. 28(15): p. 2259-71
    [PMID:19556968]
  121. Jiang W,Yu D
    Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid.
    BMC Plant Biol., 2009. 9: p. 96
    [PMID:19622176]
  122. Belin C,Lopez-Molina L
    Arabidopsis seed germination responses to osmotic stress involve the chromatin modifier PICKLE.
    Plant Signal Behav, 2008. 3(7): p. 478-9
    [PMID:19704491]
  123. Sugliani M,Rajjou L,Clerkx EJ,Koornneef M,Soppe WJ
    Natural modifiers of seed longevity in the Arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3).
    New Phytol., 2009. 184(4): p. 898-908
    [PMID:19754639]
  124. Zheng Y,Ren N,Wang H,Stromberg AJ,Perry SE
    Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15.
    Plant Cell, 2009. 21(9): p. 2563-77
    [PMID:19767455]
  125. Kim SY,Zhu T,Sung ZR
    Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis.
    Plant Physiol., 2010. 152(2): p. 516-28
    [PMID:19783648]
  126. Graeber K, et al.
    Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes.
    Plant Mol. Biol., 2010. 73(1-2): p. 67-87
    [PMID:20013031]
  127. Sugliani M,Brambilla V,Clerkx EJ,Koornneef M,Soppe WJ
    The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.
    Plant Cell, 2010. 22(6): p. 1936-46
    [PMID:20525852]
  128. Xi W,Liu C,Hou X,Yu H
    MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis.
    Plant Cell, 2010. 22(6): p. 1733-48
    [PMID:20551347]
  129. DE Meutter J, et al.
    Differential activation of ABI3 and LEA genes upon plant parasitic nematode infection.
    Mol. Plant Pathol., 2005. 6(3): p. 321-5
    [PMID:20565660]
  130. G
    AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells.
    Plant J., 2010. 64(1): p. 1-13
    [PMID:20659274]
  131. Carvalho RF,Carvalho SD,Duque P
    The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis.
    Plant Physiol., 2010. 154(2): p. 772-83
    [PMID:20699397]
  132. Park GG,Park JJ,Yoon J,Yu SN,An G
    A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice.
    Plant Mol. Biol., 2010. 74(4-5): p. 467-78
    [PMID:20878348]
  133. Pinheiro C,Chaves MM
    Photosynthesis and drought: can we make metabolic connections from available data?
    J. Exp. Bot., 2011. 62(3): p. 869-82
    [PMID:21172816]
  134. Park J,Lee N,Kim W,Lim S,Choi G
    ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds.
    Plant Cell, 2011. 23(4): p. 1404-15
    [PMID:21467583]
  135. Li H, et al.
    The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response.
    Plant Physiol., 2011. 156(2): p. 550-63
    [PMID:21478367]
  136. Yang Y,Yu X,Song L,An C
    ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency.
    Plant Physiol., 2011. 156(2): p. 873-83
    [PMID:21515696]
  137. Cotter MQ,Teaster ND,Blancaflor EB,Chapman KD
    N-acylethanolamine (NAE) inhibits growth in Arabidopsis thaliana seedlings via ABI3-dependent and -independent pathways.
    Plant Signal Behav, 2011. 6(5): p. 671-9
    [PMID:21633189]
  138. Klopffleisch K, et al.
    Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.
    Mol. Syst. Biol., 2011. 7: p. 532
    [PMID:21952135]
  139. Fern
    Isolation and characterization of novel mutant loci suppressing the ABA hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) mutant during germination and seedling growth.
    Plant Cell Physiol., 2012. 53(1): p. 53-63
    [PMID:22156383]
  140. Tang X, et al.
    Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings.
    J. Exp. Bot., 2012. 63(3): p. 1391-404
    [PMID:22162868]
  141. Gao MJ, et al.
    ASIL1 is required for proper timing of seed filling in Arabidopsis.
    Plant Signal Behav, 2011. 6(12): p. 1886-8
    [PMID:22231199]
  142. Jiang S, et al.
    The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype.
    J. Exp. Bot., 2012. 63(7): p. 2693-703
    [PMID:22282534]
  143. van Zanten M,Carles A,Li Y,Soppe WJ
    Control and consequences of chromatin compaction during seed maturation in Arabidopsis thaliana.
    Plant Signal Behav, 2012. 7(3): p. 338-41
    [PMID:22476456]
  144. Lee SA, et al.
    Analysis of Arabidopsis glucose insensitive growth mutants reveals the involvement of the plastidial copper transporter PAA1 in glucose-induced intracellular signaling.
    Plant Physiol., 2012. 159(3): p. 1001-12
    [PMID:22582133]
  145. M
    Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon.
    Nucleic Acids Res., 2012. 40(17): p. 8240-54
    [PMID:22730287]
  146. Zhang CH, et al.
    Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica).
    Genet. Mol. Res., 2012. 11(4): p. 4789-809
    [PMID:23096924]
  147. Tezuka K,Taji T,Hayashi T,Sakata Y
    A novel abi5 allele reveals the importance of the conserved Ala in the C3 domain for regulation of downstream genes and salt tolerance during germination in Arabidopsis.
    Plant Signal Behav, 2013. 8(3): p. e23455
    [PMID:23299338]
  148. Efroni I, et al.
    Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses.
    Dev. Cell, 2013. 24(4): p. 438-45
    [PMID:23449474]
  149. Li-Beisson Y, et al.
    Acyl-lipid metabolism.
    Arabidopsis Book, 2013. 11: p. e0161
    [PMID:23505340]
  150. Yotsui I, et al.
    ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens.
    New Phytol., 2013. 199(1): p. 101-9
    [PMID:23550615]
  151. Footitt S,Huang Z,Clay HA,Mead A,Finch-Savage WE
    Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes.
    Plant J., 2013. 74(6): p. 1003-15
    [PMID:23590427]
  152. Li YJ, et al.
    NFYA1 is involved in regulation of postgermination growth arrest under salt stress in Arabidopsis.
    PLoS ONE, 2013. 8(4): p. e61289
    [PMID:23637805]
  153. Kim D, et al.
    BLH1 and KNAT3 modulate ABA responses during germination and early seedling development in Arabidopsis.
    Plant J., 2013. 75(5): p. 755-66
    [PMID:23663178]
  154. Yang C, et al.
    VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis.
    Curr. Biol., 2013. 23(14): p. 1324-9
    [PMID:23810531]
  155. Liu X, et al.
    Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(38): p. 15485-90
    [PMID:23986496]
  156. Duarte GT, et al.
    Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development.
    J. Exp. Bot., 2013. 64(14): p. 4301-12
    [PMID:23997203]
  157. Jia H,McCarty DR,Suzuki M
    Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression.
    Plant Physiol., 2013. 163(3): p. 1293-305
    [PMID:24043445]
  158. Delmas F, et al.
    ABI3 controls embryo degreening through Mendel's I locus.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(40): p. E3888-94
    [PMID:24043799]
  159. Chen C, et al.
    Arabidopsis SAG protein containing the MDN1 domain participates in seed germination and seedling development by negatively regulating ABI3 and ABI5.
    J. Exp. Bot., 2014. 65(1): p. 35-45
    [PMID:24163287]
  160. Bu Q, et al.
    Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.
    Plant Physiol., 2014. 164(1): p. 424-39
    [PMID:24198318]
  161. Gao DY, et al.
    Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting.
    J Integr Plant Biol, 2014. 56(5): p. 480-91
    [PMID:24279988]
  162. Lim S, et al.
    ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis.
    Plant Cell, 2013. 25(12): p. 4863-78
    [PMID:24326588]
  163. Kim HU, et al.
    Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.
    FEBS Open Bio, 2013. 4: p. 25-32
    [PMID:24363987]
  164. Molitor AM,Bu Z,Yu Y,Shen WH
    Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes.
    PLoS Genet., 2014. 10(1): p. e1004091
    [PMID:24465219]
  165. Suzuki M,Wu S,Li Q,McCarty DR
    Distinct functions of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabidopsis.
    Plant Mol. Biol., 2014. 85(1-2): p. 179-91
    [PMID:24473899]
  166. Xie M, et al.
    AtWNK9 is regulated by ABA and dehydration and is involved in drought tolerance in Arabidopsis.
    Plant Physiol. Biochem., 2014. 77: p. 73-83
    [PMID:24561249]
  167. Ryu H,Cho H,Bae W,Hwang I
    Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3.
    Nat Commun, 2014. 5: p. 4138
    [PMID:24938150]
  168. Ding ZJ, et al.
    WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA.
    Plant J., 2014. 79(5): p. 810-23
    [PMID:24946881]
  169. Chen C, et al.
    ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin.
    Plant Physiol., 2014. 166(1): p. 370-83
    [PMID:25049361]
  170. Rikiishi K,Maekawa M
    Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.).
    PLoS ONE, 2014. 9(9): p. e107618
    [PMID:25211528]
  171. Feng CZ, et al.
    Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development.
    Plant J., 2014. 80(4): p. 654-68
    [PMID:25231920]
  172. Yamamoto A, et al.
    Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants.
    Plant Cell Physiol., 2014. 55(12): p. 2112-25
    [PMID:25282558]
  173. Bello B, et al.
    Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance.
    PLoS ONE, 2014. 9(11): p. e112269
    [PMID:25393623]
  174. Chen C,Twito S,Miller G
    New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.
    Plant Signal Behav, 2014. 9(12): p. e976489
    [PMID:25482750]
  175. Shen Y,Devic M,Lepiniec L,Zhou DX
    Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes.
    Plant Biotechnol. J., 2015. 13(6): p. 811-20
    [PMID:25581843]
  176. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  177. Roscoe TT,Guilleminot J,Bessoule JJ,Berger F,Devic M
    Complementation of Seed Maturation Phenotypes by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis.
    Plant Cell Physiol., 2015. 56(6): p. 1215-28
    [PMID:25840088]
  178. Zhao M,Yang S,Liu X,Wu K
    Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes.
    Front Plant Sci, 2015. 6: p. 159
    [PMID:25852712]
  179. Mukhopadhyay P,Tyagi AK
    OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways.
    Sci Rep, 2015. 5: p. 9998
    [PMID:25925167]
  180. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
    [PMID:25948280]
  181. Mao Z,Sun W
    Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3.
    J. Exp. Bot., 2015. 66(15): p. 4781-94
    [PMID:26019256]
  182. Zhang GZ, et al.
    Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 90(1-2): p. 77-93
    [PMID:26496910]
  183. Brasil JN, et al.
    AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling.
    BMC Plant Biol., 2015. 15: p. 270
    [PMID:26538092]
  184. Kim H, et al.
    ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis.
    Plant Mol. Biol., 2016. 90(3): p. 303-15
    [PMID:26667153]
  185. Dekkers BJ, et al.
    The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.
    Plant J., 2016. 85(4): p. 451-65
    [PMID:26729600]
  186. Huang Y,Feng CZ,Ye Q,Wu WH,Chen YF
    Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.
    PLoS Genet., 2016. 12(2): p. e1005833
    [PMID:26829043]
  187. Abraham Z, et al.
    A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions.
    Plant Physiol., 2016. 170(4): p. 2146-58
    [PMID:26858366]
  188. Salas-Muñoz S,Rodríguez-Hernández AA,Ortega-Amaro MA,Salazar-Badillo FB,Jiménez-Bremont JF
    Arabidopsis AtDjA3 Null Mutant Shows Increased Sensitivity to Abscisic Acid, Salt, and Osmotic Stress in Germination and Post-germination Stages.
    Front Plant Sci, 2016. 7: p. 220
    [PMID:26941772]
  189. Kim SI,Kwak JS,Song JT,Seo HS
    The E3 SUMO ligase AtSIZ1 functions in seed germination in Arabidopsis.
    Physiol Plant, 2016. 158(3): p. 256-271
    [PMID:27130140]
  190. Baud S, et al.
    Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed.
    Plant Physiol., 2016. 171(2): p. 1099-112
    [PMID:27208266]
  191. Bedi S,Sengupta S,Ray A,Nag Chaudhuri R
    ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.
    Plant Sci., 2016. 250: p. 125-140
    [PMID:27457990]
  192. Fatihi A, et al.
    Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds.
    Plant Sci., 2016. 250: p. 198-204
    [PMID:27457996]
  193. Zhu Z, et al.
    Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.
    Front Plant Sci, 2016. 7: p. 1285
    [PMID:27625663]
  194. Feng J,Chen D,Berr A,Shen WH
    ZRF1 Chromatin Regulators Have Polycomb Silencing and Independent Roles in Development.
    Plant Physiol., 2016. 172(3): p. 1746-1759
    [PMID:27630184]
  195. Wu JR, et al.
    The Arabidopsis heat-intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress.
    New Phytol., 2017. 213(3): p. 1181-1193
    [PMID:27673599]
  196. Gu L, et al.
    An RRM-containing mei2-like MCT1 plays a negative role in the seed germination and seedling growth of Arabidopsis thaliana in the presence of ABA.
    Plant Physiol. Biochem., 2016. 109: p. 273-279
    [PMID:27771580]
  197. Chen YS, et al.
    Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.
    Plant Mol. Biol., 2017. 93(3): p. 299-311
    [PMID:27866313]
  198. Xu J, et al.
    A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2.
    Front Plant Sci, 2017. 8: p. 24
    [PMID:28174577]
  199. Restovic F,Espinoza-Corral R,Gómez I,Vicente-Carbajosa J,Jordana X
    An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.
    Front Plant Sci, 2017. 8: p. 277
    [PMID:28293251]
  200. Le Hir R, et al.
    AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana.
    Physiol Plant, 2017. 160(3): p. 312-327
    [PMID:28369972]
  201. Han JD, et al.
    Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program.
    Front Plant Sci, 2017. 8: p. 439
    [PMID:28421087]
  202. Li K,Yang F,Miao Y,Song CP
    Abscisic acid signaling is involved in regulating the mitogen-activated protein kinase cascade module, AIK1-MKK5-MPK6.
    Plant Signal Behav, 2017. 12(5): p. e1321188
    [PMID:28494202]
  203. Bi B,Tang J,Han S,Guo J,Miao Y
    Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.
    BMC Plant Biol., 2017. 17(1): p. 99
    [PMID:28587634]
  204. Xiao X,Cheng X,Yin K,Li H,Qiu JL
    Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.
    Sci China Life Sci, 2017. 60(8): p. 891-901
    [PMID:28702742]
  205. Horstman A, et al.
    The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis.
    Plant Physiol., 2017. 175(2): p. 848-857
    [PMID:28830937]
  206. Hanano A,Almousally I,Shaban M,Murphy DJ
    Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1.
    J. Exp. Bot., 2018. 69(7): p. 1781-1794
    [PMID:29394403]
  207. Cheng Y,Zhang X,Sun T,Tian Q,Zhang WH
    Glutamate Receptor Homolog3.4 is Involved in Regulation of Seed Germination Under Salt Stress in Arabidopsis.
    Plant Cell Physiol., 2018. 59(5): p. 978-988
    [PMID:29432559]
  208. Chen N,Veerappan V,Abdelmageed H,Kang M,Allen RD
    HSI2/VAL1 Silences AGL15 to Regulate the Developmental Transition from Seed Maturation to Vegetative Growth in Arabidopsis.
    Plant Cell, 2018. 30(3): p. 600-619
    [PMID:29475938]
  209. Bedi S,Nag Chaudhuri R
    Transcription factor ABI3 auto-activates its own expression during dehydration stress response.
    FEBS Lett., 2018. 592(15): p. 2594-2611
    [PMID:30019436]
  210. Hong J,Lee H,Lee J,Kim H,Ryu H
    ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants.
    Plant Physiol. Biochem., 2019. 139: p. 207-214
    [PMID:30908972]
  211. Bobb AJ,Eiben HG,Bustos MM
    PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters.
    Plant J., 1995. 8(3): p. 331-43
    [PMID:7550372]
  212. Parcy F, et al.
    Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid.
    Plant Cell, 1994. 6(11): p. 1567-82
    [PMID:7827492]
  213. Nambara E,Keith K,McCourt P,Naito S
    Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene.
    Plant Cell Physiol., 1994. 35(3): p. 509-13
    [PMID:8055176]
  214. Vilardell J,Mart
    Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants.
    Plant Mol. Biol., 1994. 24(4): p. 561-9
    [PMID:8155877]
  215. Finkelstein RR
    Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryogenesis-abundant (lea) gene.
    Mol. Gen. Genet., 1993. 238(3): p. 401-8
    [PMID:8492808]
  216. Furini A,Parcy F,Salamini F,Bartels D
    Differential regulation of two ABA-inducible genes from Craterostigma plantagineum in transgenic Arabidopsis plants.
    Plant Mol. Biol., 1996. 30(2): p. 343-9
    [PMID:8616258]
  217. Hill A,Nantel A,Rock CD,Quatrano RS
    A conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors.
    J. Biol. Chem., 1996. 271(7): p. 3366-74
    [PMID:8631935]
  218. Devic M,Albert S,Delseny M
    Induction and expression of seed-specific promoters in Arabidopsis embryo-defective mutants.
    Plant J., 1996. 9(2): p. 205-15
    [PMID:8820607]
  219. Wehmeyer N,Hernandez LD,Finkelstein RR,Vierling E
    Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation.
    Plant Physiol., 1996. 112(2): p. 747-57
    [PMID:8883386]
  220. Hong SW,Jon JH,Kwak JM,Nam HG
    Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana.
    Plant Physiol., 1997. 113(4): p. 1203-12
    [PMID:9112773]
  221. Parcy F,Giraudat J
    Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues.
    Plant J., 1997. 11(4): p. 693-702
    [PMID:9161030]
  222. Parcy F,Valon C,Kohara A,Miséra S,Giraudat J
    The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development.
    Plant Cell, 1997. 9(8): p. 1265-77
    [PMID:9286105]
  223. Strizhov N, et al.
    Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis.
    Plant J., 1997. 12(3): p. 557-69
    [PMID:9351242]
  224. Chandler JW,Bartels D
    Structure and function of the vp1 gene homologue from the resurrection plant Craterostigma plantagineum Hochst.
    Mol. Gen. Genet., 1997. 256(5): p. 539-46
    [PMID:9413438]
  225. Haslek
    The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy.
    Plant Mol. Biol., 1998. 36(6): p. 833-45
    [PMID:9580097]
  226. Kirik V,K
    Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants.
    Plant Mol. Biol., 1998. 37(5): p. 819-27
    [PMID:9678577]
  227. Dubois P,Cutler S,Belzile FJ
    Regional insertional mutagenesis on chromosome III of Arabidopsis thaliana using the maize Ac element.
    Plant J., 1998. 13(1): p. 141-51
    [PMID:9680972]
  228. Velasco R,Salamini F,Bartels D
    Gene structure and expression analysis of the drought- and abscisic acid-responsive CDeT11-24 gene family from the resurrection plant Craterostigma plantagineum Hochst.
    Planta, 1998. 204(4): p. 459-71
    [PMID:9684369]
  229. Luerssen H,Kirik V,Herrmann P,Miséra S
    FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana.
    Plant J., 1998. 15(6): p. 755-64
    [PMID:9807814]
  230. Wolkers WF,Alberda M,Koornneef M,L
    Properties of proteins and the glassy matrix in maturation-defective mutant seeds of Arabidopsis thaliana.
    Plant J., 1998. 16(2): p. 133-43
    [PMID:9839460]
  231. Shiota H,Satoh R,Watabe K,Harada H,Kamada H
    C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes.
    Plant Cell Physiol., 1998. 39(11): p. 1184-93
    [PMID:9891417]