PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G15500.1
Common NameANAC055, ATNAC3, MJK13.16, NAC055, NAC3
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family NAC
Protein Properties Length: 317aa    MW: 35405.5 Da    PI: 8.8704
Description NAC domain containing protein 3
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G15500.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1NAM165.12.5e-51141391128
          NAM   1 lppGfrFhPtdeelvveyLkkkvegkkleleevikevdiykvePwdLpkkvkaeekewyfFskrdkkyatgkrknratksgyWkatgkdkevlskkge 98 
                  lppGfrF Ptdeel+veyL++k++g++++l + i+e+d+yk++Pw Lp+k+  +ekewyfFs+rd+ky++g+r+nr++ sgyWkatg+dk + + +g+
  AT3G15500.1  14 LPPGFRFYPTDEELMVEYLCRKAAGHDFSL-QLIAEIDLYKFDPWVLPSKALFGEKEWYFFSPRDRKYPNGSRPNRVAGSGYWKATGTDKVIST-EGR 109
                  79***************************9.89***************8777899**********************************99999.999 PP

          NAM  99 lvglkktLvfykgrapkgektdWvmheyrl 128
                   vg+kk Lvfy g+apkg+kt+W+mheyrl
  AT3G15500.1 110 RVGIKKALVFYIGKAPKGTKTNWIMHEYRL 139
                  9***************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019415.1E-6610162IPR003441NAC domain
PROSITE profilePS5100559.76514162IPR003441NAC domain
PfamPF023651.3E-2515139IPR003441NAC domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0007275Biological Processmulticellular organism development
GO:0009414Biological Processresponse to water deprivation
GO:0009867Biological Processjasmonic acid mediated signaling pathway
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000005anatomycultured plant cell
PO:0000293anatomyguard cell
PO:0009005anatomyroot
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001185developmental stageplant embryo globular stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 317 aa     Download sequence    Send to blast
MGLQELDPLA QLSLPPGFRF YPTDEELMVE YLCRKAAGHD FSLQLIAEID LYKFDPWVLP  60
SKALFGEKEW YFFSPRDRKY PNGSRPNRVA GSGYWKATGT DKVISTEGRR VGIKKALVFY  120
IGKAPKGTKT NWIMHEYRLI EPSRRNGSTK LDDWVLCRIY KKQTSAQKQA YNNLMTSGRE  180
YSNNGSSTSS SSHQYDDVLE SLHEIDNRSL GFAAGSSNAL PHSHRPVLTN HKTGFQGLAR  240
EPSFDWANLI GQNSVPELGL SHNVPSIRYG DGGTQQQTEG IPRFNNNSDV SANQGFSVDP  300
VNGFGYSGQQ SSGFGFI
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3swm_A1e-11911687174NAC domain-containing protein 19
3swm_B1e-11911687174NAC domain-containing protein 19
3swm_C1e-11911687174NAC domain-containing protein 19
3swm_D1e-11911687174NAC domain-containing protein 19
3swp_A1e-11911687174NAC domain-containing protein 19
3swp_B1e-11911687174NAC domain-containing protein 19
3swp_C1e-11911687174NAC domain-containing protein 19
3swp_D1e-11911687174NAC domain-containing protein 19
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.204600.0inflorescence| leaf| seed
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO1865101000.0
Genevisible258395_at0.0
Expression AtlasAT3G15500-
AtGenExpressAT3G15500-
ATTED-IIAT3G15500-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in leaves. {ECO:0000269|PubMed:15319476}.
Functional Description ? help Back to Top
Source Description
TAIREncodes an ATAF-like NAC-domain transcription factor that doesn't contain C-terminal sequences shared by CUC1, CUC2 and NAM. Note: this protein (AtNAC3) is not to be confused with the protein encoded by locus AT3G29035, which, on occasion, has also been referred to as AtNAC3.
UniProtTranscription factors that bind specifically to the 5'-CATGTG-3' motif. {ECO:0000269|PubMed:15319476}.
Function -- GeneRIF ? help Back to Top
  1. The anac019 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression.
    [PMID: 18427573]
  2. Gene expression analysis in mutants of ANAC019 and ANAC055 at different times during leaf senescence has revealed a distinctly different role for each of these genes.
    [PMID: 23578292]
  3. Involvement of ANAC055 in the regulation of jasmonic acid-induced chlorophyll degradation
    [PMID: 26407000]
  4. The transcript level of CAU1 decreased while that of ANAC055 (encoding a transcription factor) increased in wild-type Arabidopsis under drought stress. Further analyses showed that CAU1 bound to the promoter of ANAC055 and suppressed its expression via H4R3sme2-type histone methylation in the promoter region.
    [PMID: 29253181]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00360DAP27203113Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT3G15500.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Strongly induced by high salinity. Slightly up-regulated by drought, abscisic acid (ABA) and jasmonic acid. Not induced by cold treatment. {ECO:0000269|PubMed:15319476}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT3G45140(A), AT5G24780(A), AT5G51070(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDjasmonic acid
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G10585, AT1G69600
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G15500
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB0490700.0AB049070.1 Arabidopsis thaliana AtNAC3 mRNA, complete cds.
GenBankBT0256590.0BT025659.1 Arabidopsis thaliana At3g15500 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_188169.10.0NAC domain containing protein 3
SwissprotQ9LDY80.0NAC55_ARATH; NAC domain-containing protein 55
TrEMBLA0A178VLD30.0A0A178VLD3_ARATH; NAC3
STRINGAT3G15500.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM14352795
Representative plantOGRP1715800
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Takada S,Hibara K,Ishida T,Tasaka M
    The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation.
    Development, 2001. 128(7): p. 1127-35
    [PMID:11245578]
  3. Ooka H, et al.
    Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.
    DNA Res., 2003. 10(6): p. 239-47
    [PMID:15029955]
  4. Tran LS, et al.
    Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.
    Plant Cell, 2004. 16(9): p. 2481-98
    [PMID:15319476]
  5. Fujita M, et al.
    A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway.
    Plant J., 2004. 39(6): p. 863-76
    [PMID:15341629]
  6. Stanley Kim H, et al.
    Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome.
    Plant J., 2005. 41(2): p. 212-20
    [PMID:15634198]
  7. Buchanan-Wollaston V, et al.
    Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis.
    Plant J., 2005. 42(4): p. 567-85
    [PMID:15860015]
  8. Sun K,Cui Y,Hauser BA
    Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort.
    Planta, 2005. 222(4): p. 632-42
    [PMID:16133218]
  9. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  10. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
    [PMID:16553893]
  11. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
    [PMID:16553894]
  12. Mandaokar A, et al.
    Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling.
    Plant J., 2006. 46(6): p. 984-1008
    [PMID:16805732]
  13. Nemhauser JL,Hong F,Chory J
    Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses.
    Cell, 2006. 126(3): p. 467-75
    [PMID:16901781]
  14. Osuna D, et al.
    Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings.
    Plant J., 2007. 49(3): p. 463-91
    [PMID:17217462]
  15. Tran LS, et al.
    Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis.
    Plant J., 2007. 49(1): p. 46-63
    [PMID:17233795]
  16. de Torres-Zabala M, et al.
    Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease.
    EMBO J., 2007. 26(5): p. 1434-43
    [PMID:17304219]
  17. Jung C, et al.
    Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis.
    Plant Physiol., 2008. 146(2): p. 623-35
    [PMID:18162593]
  18. Usadel B, et al.
    Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes.
    Plant Physiol., 2008. 146(4): p. 1834-61
    [PMID:18305208]
  19. Bu Q, et al.
    Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses.
    Cell Res., 2008. 18(7): p. 756-67
    [PMID:18427573]
  20. Krishnaswamy SS, et al.
    Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana.
    BMC Plant Biol., 2008. 8: p. 91
    [PMID:18783601]
  21. Kunieda T, et al.
    NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis.
    Plant Cell, 2008. 20(10): p. 2631-42
    [PMID:18849494]
  22. Nakashima K,Ito Y,Yamaguchi-Shinozaki K
    Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses.
    Plant Physiol., 2009. 149(1): p. 88-95
    [PMID:19126699]
  23. Bu Q, et al.
    The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development.
    Plant Physiol., 2009. 150(1): p. 463-81
    [PMID:19286935]
  24. Carviel JL, et al.
    Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana.
    Mol. Plant Pathol., 2009. 10(5): p. 621-34
    [PMID:19694953]
  25. Jiang H,Li H,Bu Q,Li C
    The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response.
    Plant Signal Behav, 2009. 4(5): p. 464-6
    [PMID:19816098]
  26. Causier B,Ashworth M,Guo W,Davies B
    The TOPLESS interactome: a framework for gene repression in Arabidopsis.
    Plant Physiol., 2012. 158(1): p. 423-38
    [PMID:22065421]
  27. Zheng XY, et al.
    Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation.
    Cell Host Microbe, 2012. 11(6): p. 587-96
    [PMID:22704619]
  28. Schweizer F,Bodenhausen N,Lassueur S,Masclaux FG,Reymond P
    Differential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis.
    Front Plant Sci, 2013. 4: p. 13
    [PMID:23382734]
  29. Efroni I, et al.
    Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses.
    Dev. Cell, 2013. 24(4): p. 438-45
    [PMID:23449474]
  30. Hickman R, et al.
    A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves.
    Plant J., 2013. 75(1): p. 26-39
    [PMID:23578292]
  31. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  32. Lumba S, et al.
    A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.
    Dev. Cell, 2014. 29(3): p. 360-72
    [PMID:24823379]
  33. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  34. Zhu X, et al.
    Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes.
    Plant J., 2015. 84(3): p. 597-610
    [PMID:26407000]
  35. Takasaki H, et al.
    SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence.
    Plant J., 2015. 84(6): p. 1114-23
    [PMID:26518251]
  36. Gimenez-Ibanez S, et al.
    JAZ2 controls stomata dynamics during bacterial invasion.
    New Phytol., 2017. 213(3): p. 1378-1392
    [PMID:28005270]
  37. Hickman R, et al.
    Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network.
    Plant Cell, 2017. 29(9): p. 2086-2105
    [PMID:28827376]
  38. Fu Y,Ma H,Chen S,Gu T,Gong J
    Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055.
    J. Exp. Bot., 2018. 69(3): p. 579-588
    [PMID:29253181]