PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G15210.1
Common NameATERF4, ATERF-4, ERF078, ERF4, ERF-4, K7L4.1, RAP2-5, RAP2.5
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ERF
Protein Properties Length: 222aa    MW: 23740.8 Da    PI: 9.1569
Description ethylene responsive element binding factor 4
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G15210.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP262.31e-192473255
          AP2  2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55
                 +y+GVr ++ +gr++AeIrdp   gk++r++lg+f+taeeAa+a++ a++ ++g
  AT3G15210.1 24 RYRGVRKRP-WGRYAAEIRDP---GKKTRVWLGTFDTAEEAARAYDTAARDFRG 73
                 59*******.**********8...557**********************99988 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:3.30.730.102.5E-322481IPR001471AP2/ERF domain
SMARTSM003804.8E-372487IPR001471AP2/ERF domain
PROSITE profilePS5103224.2632481IPR001471AP2/ERF domain
PfamPF008472.2E-132473IPR001471AP2/ERF domain
CDDcd000182.03E-322481No hitNo description
SuperFamilySSF541712.03E-222482IPR016177DNA-binding domain
PRINTSPR003671.0E-112536IPR001471AP2/ERF domain
PRINTSPR003671.0E-114763IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009723Biological Processresponse to ethylene
GO:0009737Biological Processresponse to abscisic acid
GO:0009864Biological Processinduced systemic resistance, jasmonic acid mediated signaling pathway
GO:0010105Biological Processnegative regulation of ethylene-activated signaling pathway
GO:0010200Biological Processresponse to chitin
GO:0045892Biological Processnegative regulation of transcription, DNA-templated
GO:0016604Cellular Componentnuclear body
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000084anatomyplant sperm cell
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025034anatomyleaf
PO:0025281anatomypollen
PO:0001017developmental stageM germinated pollen stage
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007131developmental stageseedling development stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 222 aa     Download sequence    Send to blast
MAKMGLKPDP ATTNQTHNNA KEIRYRGVRK RPWGRYAAEI RDPGKKTRVW LGTFDTAEEA  60
ARAYDTAARD FRGAKAKTNF PTFLELSDQK VPTGFARSPS QSSTLDCASP PTLVVPSATA  120
GNVPPQLELS LGGGGGGSCY QIPMSRPVYF LDLMGIGNVG RGQPPPVTSA FRSPVVHVAT  180
KMACGAQSDS DSSSVVDFEG GMEKRSQLLD LDLNLPPPSE QA
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5wx9_A3e-2120811072Ethylene-responsive transcription factor ERF096
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.475510.0flower| inflorescence| leaf| root| seed| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible257053_at0.0
Expression AtlasAT3G15210-
AtGenExpressAT3G15210-
ATTED-IIAT3G15210-
Functional Description ? help Back to Top
Source Description
TAIREncodes a member of the ERF (ethylene response factor) subfamily B-1 of ERF/AP2 transcription factor family (ATERF-4). The protein contains one AP2 domain. Acts as a negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation.
UniProtActs as a transcriptional repressor. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways, and could also regulate other AtERFs. {ECO:0000269|PubMed:10715325, ECO:0000269|PubMed:11487705, ECO:0000269|PubMed:9756931}.
Function -- GeneRIF ? help Back to Top
  1. AtERF4 domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference
    [PMID: 19878300]
  2. AtERF4 and AtERF8 regulated the expression of many genes involved in the progression of leaf senescence.
    [PMID: 23629833]
  3. AtERF4 plays an important role as a negative regulator of Fe deficiency responses.
    [PMID: 29045490]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00358DAP27203113Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT3G15210.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by jasmonate (JA) and by Alternaria brassicicola (locally and systemically), but only slightly by ethylene. Strong induction by wounding, cold or drought stress does not require EIN2, whereas induction by NaCl does. Transcripts accumulate in cycloheximide-treated plants, a protein synthesis inhibitor. Seems to not be influenced by exogenous abscisic acid (ABA), and heat stress. {ECO:0000269|PubMed:10715325, ECO:0000269|PubMed:12805630}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G32640 (R), AT2G38470 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT3G12500(R), AT5G44420(R), AT5G52300(R), AT5G57050(R), AT5G66400(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDabscisic acid, ethylene
Interaction ? help Back to Top
Source Intact With
IntActSearch O80340
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G15210
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB0081060.0AB008106.1 Arabidopsis thaliana AtERF-4 mRNA for ethylene responsive element binding factor 4, complete cds.
GenBankAP0004130.0AP000413.1 Arabidopsis thaliana genomic DNA, chromosome 3, TAC clone: K7L4.
GenBankAY0862320.0AY086232.1 Arabidopsis thaliana clone 22775 mRNA, complete sequence.
GenBankAY1400300.0AY140030.1 Arabidopsis thaliana ethylene responsive element binding factor 4 (AtERF4) (At3g15210) mRNA, complete cds.
GenBankBT0103250.0BT010325.1 Arabidopsis thaliana At3g15210 mRNA, complete cds.
GenBankCP0026860.0CP002686.1 Arabidopsis thaliana chromosome 3, complete sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_188139.11e-164ethylene responsive element binding factor 4
SwissprotO803401e-165ERF78_ARATH; Ethylene-responsive transcription factor 4
TrEMBLA0A178VDX31e-163A0A178VDX3_ARATH; RAP2.5
STRINGAT3G15210.11e-163(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM10281650
Representative plantOGRP6161718
Publications ? help Back to Top
  1. Fujimoto SY,Ohta M,Usui A,Shinshi H,Ohme-Takagi M
    Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression.
    Plant Cell, 2000. 12(3): p. 393-404
    [PMID:10715325]
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  3. Ohta M,Matsui K,Hiratsu K,Shinshi H,Ohme-Takagi M
    Repression domains of class II ERF transcriptional repressors share an essential motif for active repression.
    Plant Cell, 2001. 13(8): p. 1959-68
    [PMID:11487705]
  4. Gutierrez RA,Ewing RM,Cherry JM,Green PJ
    Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: rapid decay is associated with a group of touch- and specific clock-controlled genes.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(17): p. 11513-8
    [PMID:12167669]
  5. Hoth S, et al.
    Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant.
    J. Cell. Sci., 2002. 115(Pt 24): p. 4891-900
    [PMID:12432076]
  6. Brown RL,Kazan K,McGrath KC,Maclean DJ,Manners JM
    A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis.
    Plant Physiol., 2003. 132(2): p. 1020-32
    [PMID:12805630]
  7. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  8. Ohno CK,Reddy GV,Heisler MG,Meyerowitz EM
    The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development.
    Development, 2004. 131(5): p. 1111-22
    [PMID:14973281]
  9. Jeter CR,Tang W,Henaff E,Butterfield T,Roux SJ
    Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis.
    Plant Cell, 2004. 16(10): p. 2652-64
    [PMID:15367717]
  10. Chang S,Pikaard CS
    Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation.
    J. Biol. Chem., 2005. 280(1): p. 796-804
    [PMID:15516340]
  11. Lu Y,Zhu J,Liu P
    A two-step strategy for detecting differential gene expression in cDNA microarray data.
    Curr. Genet., 2005. 47(2): p. 121-31
    [PMID:15688252]
  12. Cominelli E, et al.
    A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance.
    Curr. Biol., 2005. 15(13): p. 1196-200
    [PMID:16005291]
  13. Devoto A, et al.
    Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions.
    Plant Mol. Biol., 2005. 58(4): p. 497-513
    [PMID:16021335]
  14. Yang Z,Tian L,Latoszek-Green M,Brown D,Wu K
    Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses.
    Plant Mol. Biol., 2005. 58(4): p. 585-96
    [PMID:16021341]
  15. Kim S,Soltis PS,Wall K,Soltis DE
    Phylogeny and domain evolution in the APETALA2-like gene family.
    Mol. Biol. Evol., 2006. 23(1): p. 107-20
    [PMID:16151182]
  16. Wang J, et al.
    Genomewide nonadditive gene regulation in Arabidopsis allotetraploids.
    Genetics, 2006. 172(1): p. 507-17
    [PMID:16172500]
  17. McGrath KC, et al.
    Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression.
    Plant Physiol., 2005. 139(2): p. 949-59
    [PMID:16183832]
  18. Lee BH,Henderson DA,Zhu JK
    The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Plant Cell, 2005. 17(11): p. 3155-75
    [PMID:16214899]
  19. Vergnolle C, et al.
    The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions.
    Plant Physiol., 2005. 139(3): p. 1217-33
    [PMID:16258011]
  20. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  21. Raghavan C,Ong EK,Dalling MJ,Stevenson TW
    Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis.
    Funct. Integr. Genomics, 2006. 6(1): p. 60-70
    [PMID:16317577]
  22. Nakano T,Suzuki K,Fujimura T,Shinshi H
    Genome-wide analysis of the ERF gene family in Arabidopsis and rice.
    Plant Physiol., 2006. 140(2): p. 411-32
    [PMID:16407444]
  23. Song CP,Galbraith DW
    AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis.
    Plant Mol. Biol., 2006. 60(2): p. 241-57
    [PMID:16429262]
  24. Nemhauser JL,Hong F,Chory J
    Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses.
    Cell, 2006. 126(3): p. 467-75
    [PMID:16901781]
  25. AbuQamar S, et al.
    Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.
    Plant J., 2006. 48(1): p. 28-44
    [PMID:16925600]
  26. Jung J, et al.
    The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis.
    Planta, 2007. 225(3): p. 575-88
    [PMID:16937017]
  27. Sharma N,Cram D,Huebert T,Zhou N,Parkin IA
    Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress.
    Plant Mol. Biol., 2007. 63(2): p. 171-84
    [PMID:16972165]
  28. Kaplan B, et al.
    Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis.
    Plant Cell, 2006. 18(10): p. 2733-48
    [PMID:16980540]
  29. Cao WH, et al.
    Modulation of ethylene responses affects plant salt-stress responses.
    Plant Physiol., 2007. 143(2): p. 707-19
    [PMID:17189334]
  30. Ma S,Bohnert HJ
    Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression.
    Genome Biol., 2007. 8(4): p. R49
    [PMID:17408486]
  31. Hectors K,Prinsen E,De Coen W,Jansen MA,Guisez Y
    Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms.
    New Phytol., 2007. 175(2): p. 255-70
    [PMID:17587374]
  32. Dombrecht B, et al.
    MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis.
    Plant Cell, 2007. 19(7): p. 2225-45
    [PMID:17616737]
  33. Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
    Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.
    Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11
    [PMID:17722694]
  34. Giraud E, et al.
    The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress.
    Plant Physiol., 2008. 147(2): p. 595-610
    [PMID:18424626]
  35. Ferreira FJ,Guo C,Coleman JR
    Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship.
    Plant Physiol., 2008. 147(2): p. 585-94
    [PMID:18434607]
  36. Veyres N, et al.
    The Arabidopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence.
    Plant J., 2008. 55(4): p. 665-86
    [PMID:18452589]
  37. Pré M, et al.
    The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense.
    Plant Physiol., 2008. 147(3): p. 1347-57
    [PMID:18467450]
  38. Jakoby MJ, et al.
    Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106.
    Plant Physiol., 2008. 148(3): p. 1583-602
    [PMID:18805951]
  39. Kim SH,Yang SH,Kim TJ,Han JS,Suh JW
    Hypertonic stress increased extracellular ATP levels and the expression of stress-responsive genes in Arabidopsis thaliana seedlings.
    Biosci. Biotechnol. Biochem., 2009. 73(6): p. 1252-6
    [PMID:19502745]
  40. Wang S, et al.
    Molecular dynamics simulations reveal the disparity in specific recognition of GCC-box by AtERFs transcription factors super family in Arabidopsis.
    J. Mol. Recognit., 2009 Nov-Dec. 22(6): p. 474-9
    [PMID:19533627]
  41. Yang S, et al.
    Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference.
    FEBS J., 2009. 276(23): p. 7177-86
    [PMID:19878300]
  42. Kagale S,Links MG,Rozwadowski K
    Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.
    Plant Physiol., 2010. 152(3): p. 1109-34
    [PMID:20097792]
  43. Seo YJ, et al.
    Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants.
    Mol. Cells, 2010. 30(3): p. 271-7
    [PMID:20803085]
  44. Chen YY,Wang LF,Dai LJ,Yang SG,Tian WM
    Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg.
    Mol. Biol. Rep., 2012. 39(4): p. 3713-9
    [PMID:21761140]
  45. Causier B,Ashworth M,Guo W,Davies B
    The TOPLESS interactome: a framework for gene repression in Arabidopsis.
    Plant Physiol., 2012. 158(1): p. 423-38
    [PMID:22065421]
  46. Koyama T, et al.
    A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence.
    Plant Physiol., 2013. 162(2): p. 991-1005
    [PMID:23629833]
  47. Chen L, et al.
    Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.
    Plant Cell, 2013. 25(6): p. 2253-64
    [PMID:23792371]
  48. Lyons R, et al.
    The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation.
    Sci Rep, 2013. 3: p. 2866
    [PMID:24104185]
  49. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  50. Zhu Y, et al.
    CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis.
    Plant Cell, 2014. 26(10): p. 4149-70
    [PMID:25281690]
  51. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  52. Gao S, et al.
    A cotton miRNA is involved in regulation of plant response to salt stress.
    Sci Rep, 2016. 6: p. 19736
    [PMID:26813144]
  53. Zhou X, et al.
    The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling.
    Plant Physiol., 2016. 171(4): p. 2760-70
    [PMID:27255484]
  54. Liu W, et al.
    The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana.
    PLoS ONE, 2017. 12(10): p. e0186580
    [PMID:29045490]
  55. Okamuro JK,Caster B,Villarroel R,Van Montagu M,Jofuku KD
    The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 1997. 94(13): p. 7076-81
    [PMID:9192694]
  56. Hao D,Ohme-Takagi M,Sarai A
    Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant.
    J. Biol. Chem., 1998. 273(41): p. 26857-61
    [PMID:9756931]