PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT2G41240.2
Common NameBHLH100, EN7, F13H10.21
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bHLH
Protein Properties Length: 241aa    MW: 27088.5 Da    PI: 5.9607
Description basic helix-loop-helix protein 100
Gene Model
Gene Model ID Type Source Coding Sequence
AT2G41240.2genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH542.9e-1762113155
                  CHHHHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHHH CS
          HLH   1 rrrahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55 
                  ++ +hn+ Er RR++iN+ f+ Lr++lP+    +++Kls ++++ +A +YI +Lq
  AT2G41240.2  62 KKLNHNASERERRKKINTMFSSLRSCLPPT---NQTKLSVSATVSQALKYIPELQ 113
                  6789*************************9...9******************998 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000839.37E-1560116No hitNo description
PROSITE profilePS5088814.88861112IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.103.9E-1662129IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474595.63E-1862132IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000108.6E-1562113IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003531.2E-1367118IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006357Biological Processregulation of transcription from RNA polymerase II promoter
GO:0009414Biological Processresponse to water deprivation
GO:0010106Biological Processcellular response to iron ion starvation
GO:0055072Biological Processiron ion homeostasis
GO:0090575Cellular ComponentRNA polymerase II transcription factor complex
GO:0000977Molecular FunctionRNA polymerase II regulatory region sequence-specific DNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 241 aa     Download sequence    Send to blast
MCALVPPLYP NFGWPCGDHS FYETDDVSNT FLDFPLPDLT VTHENVSSEN NRTLLDNPVV  60
MKKLNHNASE RERRKKINTM FSSLRSCLPP TNQTKLSVSA TVSQALKYIP ELQEQVKKLM  120
KKKEELSFQI SGQRDLVYTD QNSKSEEGVT SYASTVSSTR LSETEVMVQI SSLQTEKCSF  180
GNVLSGVEED GLVLVGASSS RSHGERLFYS MHLQIKNGQV NSEELGDRLL YLYEKCGHSF  240
T
Expression -- Microarray ? help Back to Top
Source ID
Expression AtlasAT2G41240
AtGenExpressAT2G41240
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed constitutively in roots, leaves, and stems. {ECO:0000269|PubMed:12679534}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a member of the basic helix-loop-helix transcription factor family protein.
UniProtPlays a role in metal homeostasis. Confers tolerance to high zinc (Zn) and nickel (Ni). {ECO:0000269|PubMed:18088336}.
Function -- GeneRIF ? help Back to Top
  1. up-regulated by iron deficiency in roots and leaves
    [PMID: 17516080]
  2. bHLH100 and bHLH101 are key regulators of iron-deficiency responses independent of the master regulator FIT
    [PMID: 22984573]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT2G41240.2
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up regulated by iron deficiency in roots and leaves, as well as by nickel, high zinc or high copper treatments. Repressed by heat treatment, high iron, low copper and low zinc treatments. {ECO:0000269|PubMed:12679534, ECO:0000269|PubMed:17516080, ECO:0000269|PubMed:18088336}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT2G41240
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0746350.0AY074635.1 Arabidopsis thaliana At2g41240/F13H10.21 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_850349.11e-180basic helix-loop-helix protein 100
SwissprotQ9ZVB51e-170BH100_ARATH; Transcription factor bHLH100
TrEMBLA0A384LFW41e-168A0A384LFW4_ARATH; BHLH100
TrEMBLC0SV821e-168C0SV82_ARATH; Uncharacterized protein At2g41240 (Fragment)
STRINGAT2G41240.11e-169(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Heim MA, et al.
    The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.
    Mol. Biol. Evol., 2003. 20(5): p. 735-47
    [PMID:12679534]
  3. Rizhsky L,Liang H,Mittler R
    The water-water cycle is essential for chloroplast protection in the absence of stress.
    J. Biol. Chem., 2003. 278(40): p. 38921-5
    [PMID:12885779]
  4. Toledo-Ortiz G,Huq E,Quail PH
    The Arabidopsis basic/helix-loop-helix transcription factor family.
    Plant Cell, 2003. 15(8): p. 1749-70
    [PMID:12897250]
  5. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  6. Bailey PC, et al.
    Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana.
    Plant Cell, 2003. 15(11): p. 2497-502
    [PMID:14600211]
  7. Rizhsky L,Davletova S,Liang H,Mittler R
    The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis.
    J. Biol. Chem., 2004. 279(12): p. 11736-43
    [PMID:14722088]
  8. van de Mortel JE, et al.
    Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens.
    Plant Physiol., 2006. 142(3): p. 1127-47
    [PMID:16998091]
  9. Tran LS, et al.
    Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis.
    Plant J., 2007. 49(1): p. 46-63
    [PMID:17233795]
  10. Vorwieger A, et al.
    Iron assimilation and transcription factor controlled synthesis of riboflavin in plants.
    Planta, 2007. 226(1): p. 147-58
    [PMID:17260143]
  11. Wang HY, et al.
    Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana.
    Planta, 2007. 226(4): p. 897-908
    [PMID:17516080]
  12. van de Mortel JE, et al.
    Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.
    Plant Cell Environ., 2008. 31(3): p. 301-24
    [PMID:18088336]
  13. Huang D,Wu W,Abrams SR,Cutler AJ
    The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors.
    J. Exp. Bot., 2008. 59(11): p. 2991-3007
    [PMID:18552355]
  14. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  15. Ivanov R,Brumbarova T,Bauer P
    Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants.
    Mol Plant, 2012. 5(1): p. 27-42
    [PMID:21873619]
  16. Wang N, et al.
    Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana.
    Mol Plant, 2013. 6(2): p. 503-13
    [PMID:22983953]
  17. Sivitz AB,Hermand V,Curie C,Vert G
    Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway.
    PLoS ONE, 2012. 7(9): p. e44843
    [PMID:22984573]
  18. Maurer F,Naranjo Arcos MA,Bauer P
    Responses of a triple mutant defective in three iron deficiency-induced Basic Helix-Loop-Helix genes of the subgroup Ib(2) to iron deficiency and salicylic acid.
    PLoS ONE, 2014. 9(6): p. e99234
    [PMID:24919188]
  19. Martínez-Trujillo M, et al.
    Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana.
    Plant Mol. Biol., 2014. 86(1-2): p. 35-50
    [PMID:24928490]
  20. Van Dingenen J, et al.
    Strobilurins as growth-promoting compounds: how Stroby regulates Arabidopsis leaf growth.
    Plant Cell Environ., 2017. 40(9): p. 1748-1760
    [PMID:28444690]
  21. Wang C,Yao X,Yu D,Liang G
    Fe-deficiency-induced expression of bHLH104 enhances Fe-deficiency tolerance of Arabidopsis thaliana.
    Planta, 2017. 246(3): p. 421-431
    [PMID:28451750]
  22. Ezer D, et al.
    The G-Box Transcriptional Regulatory Code in Arabidopsis.
    Plant Physiol., 2017. 175(2): p. 628-640
    [PMID:28864470]
  23. Kailasam S,Wang Y,Lo JC,Chang HF,Yeh KC
    S-Nitrosoglutathione works downstream of nitric oxide to mediate iron-deficiency signaling in Arabidopsis.
    Plant J., 2018. 94(1): p. 157-168
    [PMID:29396986]
  24. Kurt F,Filiz E
    Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: insights into iron (Fe) homeostasis.
    Biometals, 2018. 31(4): p. 489-504
    [PMID:29546482]