PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT2G40950.1
Common NameBZIP17
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bZIP
Protein Properties Length: 721aa    MW: 78437.9 Da    PI: 6.2704
Description bZIP family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT2G40950.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1bZIP_141.13.8e-13226287162
                  XXXXCHHHCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CS
       bZIP_1   1 ekelkrerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaLkkeleelkkevaklkse 62 
                  e++ k+  r+++NRe+A+ sRqRKk ++eeLeekv ++ +  ++L  +++    e a+l+++
  AT2G40950.1 226 EEDEKKRARLMRNRESAQLSRQRKKHYVEELEEKVRNMHSTITDLNGKISYFMAENATLRQQ 287
                  67789999****************************************99999999999887 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003381.4E-16226290IPR004827Basic-leucine zipper domain
PfamPF001703.9E-11227288IPR004827Basic-leucine zipper domain
PROSITE profilePS5021710.358228288IPR004827Basic-leucine zipper domain
Gene3DG3DSA:1.20.5.1707.6E-17230288No hitNo description
SuperFamilySSF579592.81E-12230288No hitNo description
CDDcd147041.41E-21231282No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0042538Biological Processhyperosmotic salinity response
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0000139Cellular ComponentGolgi membrane
GO:0005634Cellular Componentnucleus
GO:0005783Cellular Componentendoplasmic reticulum
GO:0005789Cellular Componentendoplasmic reticulum membrane
GO:0016021Cellular Componentintegral component of membrane
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000036anatomyleaf vascular system
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0003011anatomyroot vascular system
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 721 aa     Download sequence    Send to blast
MAEPITKEQP PPPAPDPNST YPPPSDFDSI SIPPLDDHFS DQTPIGELMS DLGFPDGEFE  60
LTFDGMDDLY FPAENESFLI PINTSNQEQF GDFTPESESS GISGDCIVPK DADKTITTSG  120
CINRESPRDS DDRCSGADHN LDLPTPLSSQ GSGNCGSDVS EATNESSPKS RNVAVDQKVK  180
VEEAATTTTS ITKRKKEIDE DLTDESRNSK YRRSGEDADA SAVTGEEDEK KRARLMRNRE  240
SAQLSRQRKK HYVEELEEKV RNMHSTITDL NGKISYFMAE NATLRQQLGG NGMCPPHLPP  300
PPMGMYPPMA PMPYPWMPCP PYMVKQQGSQ VPLIPIPRLK PQNTLGTSKA KKSESKKSEA  360
KTKKVASISF LGLLFCLFLF GALAPIVNVN YGGISGAFYG NYRSNYITDQ IYSQHRDRVL  420
DTSRSGAGTG VSNSNGMHRG RDSDRGARKN ISATESSVTP GNGSEPLVAS LFVPRNDKLV  480
KIDGNLIINS ILASEKAVAS RKASESKERK ADLMISKDYT PALPLPDVGR TEELAKHLYR  540
SKAEKQKALS SGSADTLKDQ VKTKAANGEM QQWFREGVAG PMFSSGMCTE VFQFDVSSTS  600
GAIIPAATNV SAEHGKNTTD THKQQNRRIL RGLPIPLPGS DFNLTKEHQR NSSSKEIKPA  660
SSMVVSVLVD PREGGDGDID GMIGGPKSLS RVFVVVLLDS AKYVTYSCVL PRSGAPHLVT  720
T
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.428920.0root
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO306884760.0
Genevisible245092_at0.0
Expression AtlasAT2G40950-
AtGenExpressAT2G40950-
ATTED-IIAT2G40950-
Functional Description ? help Back to Top
Source Description
TAIRbZIP17 appears to regulate transcription as part of a salt and osmotic stress response. zip17 mutants show enhanced inhibition of primary root elongation in response to NaCl. Several salt-responsive genes, such as ATHB-7 show a reduced transcriptional response to a salt treatment in zip17 mutant seedlings. myc:bZIP17 undergoes proteolytic processing in salt-treated wild type seedlings, but not in s1p-3 (subtilase) mutants and there is also evidence for S1P-mediated cleavage of bZIP17 in vitro. In addition, an mGFP:bZIP17 protein moves from the ER to the nucleus following salt treatment.
UniProtTranscriptional activator involved in salt and osmotic stress responses. Functions as a stress sensor and transducer in a signaling pathway that resembles an ER stress response. Following salt stress, BZIP17 is cleaved by SBT6.1 (S1P) and S2P at the C-terminus and the N-terminal bZIP component is translocated to the nucleus, where it activates the expression of salt stress response genes (PubMed:17662035). Functions as a stress sensor and transducer in ER stress signaling pathway. ER stress induces proteolysis of BZIP17 by SBT6.1 (S1P) and S2P, and the N-terminal bZIP component is translocated to the nucleus, where it activates the expression and production of ER chaperones, as well as protein involved in brassinosteroid (BR) signaling, which is required for stress acclimation and growth (PubMed:20876872). {ECO:0000269|PubMed:17662035, ECO:0000269|PubMed:20876872}.
Function -- GeneRIF ? help Back to Top
  1. Salt stress induces a signaling cascade involving the processing of AtbZIP17, its translocation to the nucleus and the upregulation of salt stress genes.
    [PMID: 17662035]
  2. Activated AtbZIP17 enhanced salt tolerance under salt stress conditions.
    [PMID: 18721266]
  3. Results indicate that the ER-located transcription factors bZIP17 and bZIP60 play a role in salt stress but this response goes through a signaling pathway that is different to that triggered by the unfolded protein response.
    [PMID: 25704669]
  4. A pivotal roles of bZIP17 in root elongation and unfolded protein response.
    [PMID: 29367234]
  5. These results suggest that bZIP17 plays a role in osmotic stress, acting as a negative regulator of germination through the regulation of genes involved in seed storage and germination.
    [PMID: 29693271]
  6. Biochemical evidence revealed that SES1 functions as an important molecular chaperone to alleviate salt-induced endoplasmic reticulum (ER) stress. Furthermore, the ER stress sensor basic leucine zipper factor17 transactivated SES1 by binding directly to its promoter region.
    [PMID: 30287478]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT2G40950.1
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G46680(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT2G40950, AT3G10800, AT3G56660, AT1G42990
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: No visible phenotype under normal growth conditions, but mutant plants have increased sensitivity to salt-induced osmotic stress. {ECO:0000269|PubMed:17662035}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT2G40950
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY1362950.0AY136295.1 Arabidopsis thaliana putative TGACG-sequence-specific bZIP DNA-binding protein (At2g40950) mRNA, complete cds.
GenBankBT0004080.0BT000408.1 Arabidopsis thaliana putative TGACG-sequence-specific bZIP DNA-binding protein (At2g40950) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_565946.10.0Basic-leucine zipper (bZIP) transcription factor family protein
SwissprotO222080.0BZP17_ARATH; bZIP transcription factor 17
TrEMBLA0A178VQX70.0A0A178VQX7_ARATH; BZIP17
STRINGAT2G40950.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM88812737
Representative plantOGRP21711628
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Jakoby M, et al.
    bZIP transcription factors in Arabidopsis.
    Trends Plant Sci., 2002. 7(3): p. 106-11
    [PMID:11906833]
  3. Folta KM,Pontin MA,Karlin-Neumann G,Bottini R,Spalding EP
    Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light.
    Plant J., 2003. 36(2): p. 203-14
    [PMID:14535885]
  4. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  5. Satoh R,Fujita Y,Nakashima K,Shinozaki K,Yamaguchi-Shinozaki K
    A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis.
    Plant Cell Physiol., 2004. 45(3): p. 309-17
    [PMID:15047879]
  6. Deppmann CD, et al.
    Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs.
    Nucleic Acids Res., 2004. 32(11): p. 3435-45
    [PMID:15226410]
  7. Deppmann CD,Alvania RS,Taparowsky EJ
    Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks.
    Mol. Biol. Evol., 2006. 23(8): p. 1480-92
    [PMID:16731568]
  8. Cheng C, et al.
    An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice.
    BMC Genomics, 2007. 8: p. 175
    [PMID:17577400]
  9. Liu JX,Srivastava R,Che P,Howell SH
    Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling.
    Plant J., 2007. 51(5): p. 897-909
    [PMID:17662035]
  10. Liu JX,Srivastava R,Che P,Howell SH
    An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28.
    Plant Cell, 2007. 19(12): p. 4111-9
    [PMID:18156219]
  11. Tajima H,Iwata Y,Iwano M,Takayama S,Koizumi N
    Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response.
    Biochem. Biophys. Res. Commun., 2008. 374(2): p. 242-7
    [PMID:18634751]
  12. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
    [PMID:18650403]
  13. Liu JX,Srivastava R,Howell SH
    Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis.
    Plant Cell Environ., 2008. 31(12): p. 1735-43
    [PMID:18721266]
  14. Liu JX,Howell SH
    bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis.
    Plant Cell, 2010. 22(3): p. 782-96
    [PMID:20207753]
  15. Che P, et al.
    Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis.
    Sci Signal, 2010. 3(141): p. ra69
    [PMID:20876872]
  16. Iwata Y,Koizumi N
    Plant transducers of the endoplasmic reticulum unfolded protein response.
    Trends Plant Sci., 2012. 17(12): p. 720-7
    [PMID:22796463]
  17. Henriquez-Valencia C, et al.
    bZIP17 and bZIP60 Regulate the Expression of BiP3 and Other Salt Stress Responsive Genes in an UPR-Independent Manner in Arabidopsis thaliana.
    J. Cell. Biochem., 2015. 116(8): p. 1638-45
    [PMID:25704669]
  18. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  19. Zhou SF, et al.
    Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.
    New Phytol., 2015. 208(1): p. 188-97
    [PMID:25919792]
  20. Sagor GH, et al.
    The polyamine spermine induces the unfolded protein response via the MAPK cascade in Arabidopsis.
    Front Plant Sci, 2015. 6: p. 687
    [PMID:26442007]
  21. Ezer D, et al.
    The G-Box Transcriptional Regulatory Code in Arabidopsis.
    Plant Physiol., 2017. 175(2): p. 628-640
    [PMID:28864470]
  22. Kim JS,Yamaguchi-Shinozaki K,Shinozaki K
    ER-Anchored Transcription Factors bZIP17 and bZIP28 Regulate Root Elongation.
    Plant Physiol., 2018. 176(3): p. 2221-2230
    [PMID:29367234]
  23. Cifuentes-Esquivel N, et al.
    bZIP17 regulates the expression of genes related to seed storage and germination, reducing seed susceptibility to osmotic stress.
    J. Cell. Biochem., 2018. 119(8): p. 6857-6868
    [PMID:29693271]
  24. Guan P, et al.
    SENSITIVE TO SALT1, An Endoplasmic Reticulum-Localized Chaperone, Positively Regulates Salt Resistance.
    Plant Physiol., 2018. 178(3): p. 1390-1405
    [PMID:30287478]