PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT2G17950.1
Common NamePGA6, T27K22.18, WUS, WUS1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family WOX
Protein Properties Length: 292aa    MW: 33189.5 Da    PI: 8.0463
Description WOX family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT2G17950.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
     Homeobox  3 kRttftkeqleeLeelFek..nrypsaeereeLAkkl....gLterqVkvWFqNrRakekk 57
                 +R+t+t+eq+++L+el+++   r p+a+++++++++l    +++ ++V++WFqN++a+e++
                 8*****************85679************************************97 PP

  Wus_type_Homeobox  2 artRWtPtpeQikiLeelyk.sGlrtPnkeeiqritaeLeeyGkiedkNVfyWFQNrkaRerqkq 65
                       ++tRWtPt+eQikiL+ely+ +++r+P++++iq+ita+L+++Gkie+kNVfyWFQN+kaRerqk+
                       789***************97699****************************************96 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5007110.3983298IPR001356Homeobox domain
SMARTSM003891.1E-434102IPR001356Homeobox domain
PfamPF000461.3E-163797IPR001356Homeobox domain
CDDcd000869.03E-73799No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010492Biological Processmaintenance of shoot apical meristem identity
GO:0030154Biological Processcell differentiation
GO:0080166Biological Processstomium development
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000229anatomyflower meristem
PO:0009009anatomyplant embryo
PO:0020003anatomyplant ovule
PO:0020148anatomyshoot apical meristem
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 292 aa     Download sequence    Send to blast
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT2G17950-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed from 16 cell embryo stage, long before shoot meristem is evident, and gradually become restricted to the center of shoot meristem primordium. {ECO:0000269|PubMed:9865698}.
UniprotTISSUE SPECIFICITY: In the active shoot meristem, it is specifically expressed in a small cell group underneath the presume position of stem cells. Also expressed in the floral meristem. Expressed in the nucellus of ovule primordia. {ECO:0000269|PubMed:12000795, ECO:0000269|PubMed:9865698}.
Functional Description ? help Back to Top
Source Description
TAIRHomeobox gene controlling the stem cell pool. Expressed in the stem cell organizing center of meristems. Required to keep the stem cells in an undifferentiated state. Regulation of WUS transcription is a central checkpoint in stem cell control. The size of the WUS expression domain controls the size of the stem cell population through WUS indirectly activating the expression of CLAVATA3 (CLV3) in the stem cells and CLV3 repressing WUS transcription through the CLV1 receptor kinase signaling pathway. Repression of WUS transcription through AGAMOUS (AG) activity controls stem cell activity in the determinate floral meristem. Binds to TAAT element core motif. WUS is also involved in cell differentiation during anther development.
UniProtTranscription factor that plays a central role during early embryogenesis, oogenesis and flowering, probably by regulating expression of specific genes. Required to specify stem cell identity in meristems, such as shoot apical meristem (SAM). May induce shoot stem cells activity in order to maintain the stem cell identity. Involved in the developmental root meristem. In shoot apices, it is sufficient to induce the expression of CLV3, a putative ligand of the CLV signaling pathway. Also required to sustain organogenesis in the floral meristem by contributing to the expression of its own repressor, the AGAMOUS (AG) gene at the end of flower development. Binds directly to the 5'-TTAAT[GC][GC]-3' DNA sequence in the regulatory sequence of AG and activates its expression directly. Regulates one important step in ovule development to induce integument formation from the underlying chalazal domain. Participates in the promotion of vegetative to embryonic transition. Required to repress LEC1 expression. {ECO:0000269|PubMed:10761929, ECO:0000269|PubMed:11440721, ECO:0000269|PubMed:11440722, ECO:0000269|PubMed:12000682, ECO:0000269|PubMed:12000795, ECO:0000269|PubMed:12068101, ECO:0000269|PubMed:12070094, ECO:0000269|PubMed:12070095, ECO:0000269|PubMed:15004006, ECO:0000269|PubMed:9865698}.
Function -- GeneRIF ? help Back to Top
  1. Ultrapetal1 negatively regulates WUSCHEL to establish floral meristem determinacy.
    [PMID: 15342527]
  2. results suggest that overexpression of WUS could trigger cell pluripotence and reestablish new meristems from differentiated tissues
    [PMID: 15952065]
  3. The homeobox gene WUSCHEL (WUS) is expressed in the organizing center underneath the stem cells and integrates regulatory information from several pathways to define the boundaries of the stem cell niche.
    [PMID: 15980263]
  4. data indicate that ARR genes might negatively influence meristem size and that their repression by WUS might be necessary for proper meristem function
    [PMID: 16372013]
  5. Detailed characterization of a semidominant roa allele revealed an essential role for the conserved C-terminal domain that mediates an interaction between WUS and two members of a small family of corepressor-like proteins in Arabidopsis.
    [PMID: 16461579]
  6. facilitates high cytokinin activity in the shoot apical meristem
    [PMID: 16877025]
  7. WUS expression is initiated very early during anther development in the precursor cells of the stomium and terminates just before the stomium cells enter terminal differentiation
    [PMID: 17027956]
  8. Importantly, both WOX5 and WUS maintain stem cells in either a root or shoot context.
    [PMID: 17429400]
  9. Data suggest that, by limiting WUS expression to the organizing center, BARD1 regulates shoot apical meristem organization and maintenance.
    [PMID: 18591352]
  10. WUS-dependent organising centre signalling to the stem cells is promoted by AGO1 and subsequently maintained by a provascular ZLL-dependent signalling pathway.
    [PMID: 18653559]
  11. Establishment of auxin gradients and PIN1-mediated polar auxin transport are essential for WUS induction and somatic embryogenesis.
    [PMID: 19453451]
  12. Data show that cytokinin-induced WUSCHEL expression occurs through both CLAVATA-dependent and CLAVATA-independent pathways.
    [PMID: 19717465]
  13. Our results demonstrate that WUS acts mainly as a repressor and that its function changes from that of a repressor to that of an activator in the case of regulation of the expression of AG.
    [PMID: 19897670]
  14. WUS produces severe phenotypes by disrupting the development of somatic embryos on the maturation medium and inhibiting germination.
    [PMID: 20424847]
  15. CLAVATA1 is part of a negative feedback regulation of WUSCHEL protein in Arabidopsis thaliana.
    [PMID: 20493817]
  16. WUS expression is controlled by the ratio of cytokinin with auxin.
    [PMID: 20514542]
  17. New function for WUS in mediating the balance between differentiation and non-differentiating cells of the peripheral zone.
    [PMID: 20876644]
  18. WUSCHEL-mediated cellular feedback network imparts robustness to stem cell homeostasis.
    [PMID: 21406977]
  19. DNA methylation and histone modifications regulate de novo shoot regeneration by modulating WUS expression and auxin signaling.
    [PMID: 21876682]
  20. the WUS protein, after being synthesized in cells of the organizing center, migrates into the central zone, where it activates CLV3 transcription by binding to its promoter elements
    [PMID: 21979915]
  21. AG directly represses WUS expression by binding to the WUS locus and recruiting, directly or indirectly, PcG that methylates histone H3 Lys-27 at WUS.
    [PMID: 22028461]
  22. Studies indicate that the shoot and root meristems are promoted by WUSCHEL (WUS) and WOX5.
    [PMID: 22076631]
  23. Cytokinin treatment induces the expression of the shoot meristematic gene WUSCHEL (WUS) in converting LRP (cLRP) within 24-30 h, and WUS is required for lateral root primorida(LRP)--> New shoot meristems (SMs) conversion.
    [PMID: 23181633]
  24. Results suggest that ASL11/LBD15 affects cellular differentiation in the SAM and regulates WUS expression.
    [PMID: 23397191]
  25. GRP23 expression can be activated by WUS.
    [PMID: 24086632]
  26. Strong upregulation of WUS in the inflorescence meristem leads to ectopic expression of the AGAMOUS homeotic gene to a level that switches cell fate from floral meristem founder cell to carpel founder cell.
    [PMID: 24496620]
  27. AtWus may therefore increase the differentiation potential of cotton callus by triggering the auxin transport and signaling pathways.
    [PMID: 24498119]
  28. HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3)
    [PMID: 24576426]
  29. In the floral meristem, the binding of AG to WUS is reduced in top1a-2, which results in reduced H3K27me3 levels at WUS and prolonged WUS expression, and consequently loss of floral determinacy.
    [PMID: 25070639]
  30. Data indicate that the stem cell inducing transcription factor WUSCHEL (WUS) moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function.
    [PMID: 25246576]
  31. The stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein.
    [PMID: 25764476]
  32. stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA).
    [PMID: 26011610]
  33. The branching ovules of the mutant resemble those of some fossil gymnosperms, implicating BEL1 and HD-ZIPIII genes as players in the evolution of the unbranched ovule form in extant angiosperms.
    [PMID: 26700684]
  34. The interplay between cytokinin signaling, WUS/CLV feedback loop and boundary signals can account for positioning of the WUS expression in the process of Arabidopsis thaliana shoot apical meristem patterning.
    [PMID: 26872130]
  35. there is a positive feedback regulation between WUS and OBE3 that contributes to shoot meristem homeostasis
    [PMID: 27196372]
  36. WUS is regulated by a balance between positive regulation by cytokinin and negative regulation by CLAVATA protein.
    [PMID: 27208247]
  37. results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.
    [PMID: 28389585]
  38. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis
    [PMID: 28399422]
  39. ARR12 binds to the promoter of WUS.
    [PMID: 28681564]
  40. Cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein.
    [PMID: 29659567]
  41. Study find that WUSCHEL, a key gene required for apical meristem maintenance, is a cytokinin-dependent type-B ARABIDOPSIS RESPONSE REGULATORS target gene, demonstrating the importance of the cytokinin transcription factor network in shoot development.
    [PMID: 29686312]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Repressed by the CLV (CLV1, CLV2 and CLV3) proteins, possibly to rapidly down-regulate WUS expression in apical daughter cells after cell divisions, suggesting the existence of a feedback loop. Repressed by AG at the end of floral development. Down-regulated by ULT1, probably to establish floral meristem determinacy. {ECO:0000269|PubMed:10761929, ECO:0000269|PubMed:11440721, ECO:0000269|PubMed:11440722, ECO:0000269|PubMed:15342527}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G09770 (A), AT1G12980 (A), AT1G24260 (R), AT1G30490 (R), AT1G52150 (R), AT1G68640 (R), AT2G33880 (A), AT2G34710 (R), AT3G23130 (R), AT4G18960 (R), AT4G27330 (A), AT5G14010 (R), AT5G41410 (R), AT5G45980 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G19050(R), AT1G21970(R), AT1G62360(A), AT1G74890(R), AT2G27250(A), AT3G48100(R), AT4G18960(A), AT4G37750(A), AT5G62920(R)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT2G17950, AT2G45160, AT3G60630, AT4G00150, AT4G36710
IntActSearch Q9SB92
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT2G17950
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0863850.0AY086385.1 Arabidopsis thaliana clone 248156 mRNA, complete sequence.
GenBankBT0289010.0BT028901.1 Arabidopsis thaliana unknown protein (At2g17950) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_565429.10.0Homeodomain-like superfamily protein
SwissprotQ9SB920.0WUS_ARATH; Protein WUSCHEL
TrEMBLA0MEM40.0A0MEM4_ARATH; Uncharacterized protein (Fragment)
TrEMBLQ1PF510.0Q1PF51_ARATH; At2g17950
STRINGAT2G17950.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP90871114
Publications ? help Back to Top
  1. Yu LP,Simon EJ,Trotochaud AE,Clark SE
    POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci.
    Development, 2000. 127(8): p. 1661-70
  2. Schoof H, et al.
    The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.
    Cell, 2000. 100(6): p. 635-44
  3. Brand U,Fletcher JC,Hobe M,Meyerowitz EM,Simon R
    Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.
    Science, 2000. 289(5479): p. 617-9
  4. Hamada S, et al.
    Mutations in the WUSCHEL gene of Arabidopsis thaliana result in the development of shoots without juvenile leaves.
    Plant J., 2000. 24(1): p. 91-101
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  6. Kaya H, et al.
    FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems.
    Cell, 2001. 104(1): p. 131-42
  7. Clark SE
    Cell signalling at the shoot meristem.
    Nat. Rev. Mol. Cell Biol., 2001. 2(4): p. 276-84
  8. Lohmann JU, et al.
    A molecular link between stem cell regulation and floral patterning in Arabidopsis.
    Cell, 2001. 105(6): p. 793-803
  9. Lenhard M,Bohnert A,J
    Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS.
    Cell, 2001. 105(6): p. 805-14
  10. Doerner P
    Plant meristems: a m
    Curr. Biol., 2001. 11(19): p. R785-7
  11. Roeder AH,Yanofsky MF
    Unraveling the mystery of double flowers.
    Dev. Cell, 2001. 1(1): p. 4-6
  12. Ishiguro S, et al.
    SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins.
    EMBO J., 2002. 21(5): p. 898-908
  13. Mordhorst AP,Hartog MV,El Tamer MK,Laux T,de Vries SC
    Somatic embryogenesis from Arabidopsis shoot apical meristem mutants.
    Planta, 2002. 214(6): p. 829-36
  14. Zuo J,Niu QW,Frugis G,Chua NH
    The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis.
    Plant J., 2002. 30(3): p. 349-59
  15. Gross-Hardt R,Lenhard M,Laux T
    WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development.
    Genes Dev., 2002. 16(9): p. 1129-38
  16. Bishop GJ,Koncz C
    Brassinosteroids and plant steroid hormone signaling.
    Plant Cell, 2002. 14 Suppl: p. S97-110
  17. Nakajima K,Benfey PN
    Signaling in and out: control of cell division and differentiation in the shoot and root.
    Plant Cell, 2002. 14 Suppl: p. S265-76
  18. Brand U,Grünewald M,Hobe M,Simon R
    Regulation of CLV3 expression by two homeobox genes in Arabidopsis.
    Plant Physiol., 2002. 129(2): p. 565-75
  19. Lenhard M,Jürgens G,Laux T
    The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation.
    Development, 2002. 129(13): p. 3195-206
  20. Gallois JL,Woodward C,Reddy GV,Sablowski R
    Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis.
    Development, 2002. 129(13): p. 3207-17
  21. Cary AJ,Che P,Howell SH
    Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana.
    Plant J., 2002. 32(6): p. 867-77
  22. Cheng Y,Kato N,Wang W,Li J,Chen X
    Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana.
    Dev. Cell, 2003. 4(1): p. 53-66
  23. Yu LP,Miller AK,Clark SE
    POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems.
    Curr. Biol., 2003. 13(3): p. 179-88
  24. Kirch T,Simon R,Grünewald M,Werr W
    The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development.
    Plant Cell, 2003. 15(3): p. 694-705
  25. Doerner P
    Plant meristems: a merry-go-round of signals.
    Curr. Biol., 2003. 13(9): p. R368-74
  26. Bertrand C,Bergounioux C,Domenichini S,Delarue M,Zhou DX
    Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway.
    J. Biol. Chem., 2003. 278(30): p. 28246-51
  27. Lenhard M,Laux T
    Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1.
    Development, 2003. 130(14): p. 3163-73
  28. Kamiya N,Nagasaki H,Morikami A,Sato Y,Matsuoka M
    Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem.
    Plant J., 2003. 35(4): p. 429-41
  29. Moussian B,Haecker A,Laux T
    ZWILLE buffers meristem stability in Arabidopsis thaliana.
    Dev. Genes Evol., 2003. 213(11): p. 534-40
  30. J
    Growing up green: cellular basis of plant development.
    Mech. Dev., 2003. 120(11): p. 1395-406
  31. Gallois JL,Nora FR,Mizukami Y,Sablowski R
    WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem.
    Genes Dev., 2004. 18(4): p. 375-80
  32. Laux T,W
    Genetic regulation of embryonic pattern formation.
    Plant Cell, 2004. 16 Suppl: p. S190-202
  33. Suzuki T, et al.
    A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristems.
    Plant J., 2004. 38(4): p. 673-84
  34. Cnops G, et al.
    The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis.
    J. Exp. Bot., 2004. 55(402): p. 1529-39
  35. Sieber P, et al.
    Pattern formation during early ovule development in Arabidopsis thaliana.
    Dev. Biol., 2004. 273(2): p. 321-34
  36. Carles CC,Lertpiriyapong K,Reville K,Fletcher JC
    The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy.
    Genetics, 2004. 167(4): p. 1893-903
  37. Zhao Y, et al.
    HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis.
    Plant Cell, 2004. 16(10): p. 2586-600
  38. Carles CC,Choffnes-Inada D,Reville K,Lertpiriyapong K,Fletcher JC
    ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
    Development, 2005. 132(5): p. 897-911
  39. Green KA,Prigge MJ,Katzman RB,Clark SE
    CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis.
    Plant Cell, 2005. 17(3): p. 691-704
  40. Wu X,Dabi T,Weigel D
    Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance.
    Curr. Biol., 2005. 15(5): p. 436-40
  41. Kwon CS,Chen C,Wagner D
    WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis.
    Genes Dev., 2005. 19(8): p. 992-1003
  42. Xu YY, et al.
    Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana.
    Plant Mol. Biol., 2005. 57(6): p. 773-84
  43. J
    Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem.
    Bioinformatics, 2005. 21 Suppl 1: p. i232-40
  44. Bäurle I,Laux T
    Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem.
    Plant Cell, 2005. 17(8): p. 2271-80
  45. Williams L,Grigg SP,Xie M,Christensen S,Fletcher JC
    Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes.
    Development, 2005. 132(16): p. 3657-68
  46. Kapoor M, et al.
    Transgene-triggered, epigenetically regulated ectopic expression of a flower homeotic gene pMADS3 in Petunia.
    Plant J., 2005. 43(5): p. 649-61
  47. Xu YY,Chong K
    [Progress in research on plant stem cell organizer gene WUSCHEL].
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 2005. 31(5): p. 461-8
  48. Leibfried A, et al.
    WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators.
    Nature, 2005. 438(7071): p. 1172-5
  49. Würschum T,Gross-Hardt R,Laux T
    APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem.
    Plant Cell, 2006. 18(2): p. 295-307
  50. Tan QK,Irish VF
    The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development.
    Plant Physiol., 2006. 140(3): p. 1095-108
  51. Kieffer M, et al.
    Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance.
    Plant Cell, 2006. 18(3): p. 560-73
  52. De Bodt S,Theissen G,Van de Peer Y
    Promoter analysis of MADS-box genes in eudicots through phylogenetic footprinting.
    Mol. Biol. Evol., 2006. 23(6): p. 1293-303
  53. M
    Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling.
    Plant Cell, 2006. 18(5): p. 1188-98
  54. Fiers M, et al.
    The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the nonconserved flanking sequences.
    Plant Physiol., 2006. 141(4): p. 1284-92
  55. Shani E,Yanai O,Ori N
    The role of hormones in shoot apical meristem function.
    Curr. Opin. Plant Biol., 2006. 9(5): p. 484-9
  56. Nilsson L,Carlsbecker A,Sund
    APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues.
    Planta, 2007. 225(3): p. 589-602
  57. Nardmann J,Werr W
    The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution.
    Mol. Biol. Evol., 2006. 23(12): p. 2492-504
  58. Deyhle F,Sarkar AK,Tucker EJ,Laux T
    WUSCHEL regulates cell differentiation during anther development.
    Dev. Biol., 2007. 302(1): p. 154-9
  59. Barrero LS,Cong B,Wu F,Tanksley SD
    Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato.
    Genome, 2006. 49(8): p. 991-1006
  60. Song SK,Lee MM,Clark SE
    POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells.
    Development, 2006. 133(23): p. 4691-8
  61. Sablowski R
    Flowering and determinacy in Arabidopsis.
    J. Exp. Bot., 2007. 58(5): p. 899-907
  62. Chiu WH,Chandler J,Cnops G,Van Lijsebettens M,Werr W
    Mutations in the TORNADO2 gene affect cellular decisions in the peripheral zone of the shoot apical meristem of Arabidopsis thaliana.
    Plant Mol. Biol., 2007. 63(6): p. 731-44
  63. Rashid SZ,Yamaji N,Kyo M
    Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco.
    Plant Cell Rep., 2007. 26(9): p. 1449-55
  64. Sarkar AK, et al.
    Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers.
    Nature, 2007. 446(7137): p. 811-4
  65. Sonoda Y, et al.
    SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis.
    Plant J., 2007. 50(4): p. 586-96
  66. Scofield S,Dewitte W,Murray JA
    The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis.
    Plant J., 2007. 50(5): p. 767-81
  67. Che P,Lall S,Howell SH
    Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture.
    Planta, 2007. 226(5): p. 1183-94
  68. Yin XJ, et al.
    Ubiquitin lysine 63 chain forming ligases regulate apical dominance in Arabidopsis.
    Plant Cell, 2007. 19(6): p. 1898-911
  69. Brambilla V, et al.
    Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis.
    Plant Cell, 2007. 19(8): p. 2544-56
  70. Wu X,Chory J,Weigel D
    Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development.
    Dev. Biol., 2007. 309(2): p. 306-16
  71. Lin Z, et al.
    AtCDC5 regulates the G2 to M transition of the cell cycle and is critical for the function of Arabidopsis shoot apical meristem.
    Cell Res., 2007. 17(9): p. 815-28
  72. Gordon SP, et al.
    Pattern formation during de novo assembly of the Arabidopsis shoot meristem.
    Development, 2007. 134(19): p. 3539-48
  73. Baucher M,El Jaziri M,Vandeputte O
    From primary to secondary growth: origin and development of the vascular system.
    J. Exp. Bot., 2007. 58(13): p. 3485-501
  74. To JP, et al.
    Cytokinin regulates type-A Arabidopsis Response Regulator activity and protein stability via two-component phosphorelay.
    Plant Cell, 2007. 19(12): p. 3901-14
  75. Tan FC,Swain SM
    Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Physiol Plant, 2007. 131(3): p. 481-95
  76. Chandler J,Nardmann J,Werr W
    Plant development revolves around axes.
    Trends Plant Sci., 2008. 13(2): p. 78-84
  77. Prunet N, et al.
    REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana.
    Plant Cell, 2008. 20(4): p. 901-19
  78. Goldshmidt A,Alvarez JP,Bowman JL,Eshed Y
    Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems.
    Plant Cell, 2008. 20(5): p. 1217-30
  79. Han P,Li Q,Zhu YX
    Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center.
    Plant Cell, 2008. 20(6): p. 1482-93
  80. Song SK,Hofhuis H,Lee MM,Clark SE
    Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis.
    Dev. Cell, 2008. 15(1): p. 98-109
  81. Tucker MR, et al.
    Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo.
    Development, 2008. 135(17): p. 2839-43
  82. Suzaki T,Yoshida A,Hirano HY
    Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice.
    Plant Cell, 2008. 20(8): p. 2049-58
  83. Wang X, et al.
    Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis.
    Cell Res., 2009. 19(2): p. 224-35
  84. Rebocho AB, et al.
    Role of EVERGREEN in the development of the cymose petunia inflorescence.
    Dev. Cell, 2008. 15(3): p. 437-47
  85. Geier F, et al.
    A quantitative and dynamic model for plant stem cell regulation.
    PLoS ONE, 2008. 3(10): p. e3553
  86. Atta R, et al.
    Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro.
    Plant J., 2009. 57(4): p. 626-44
  87. Casson SA,Topping JF,Lindsey K
    MERISTEM-DEFECTIVE, an RS domain protein, is required for the correct meristem patterning and function in Arabidopsis.
    Plant J., 2009. 57(5): p. 857-69
  88. Yu L,Patibanda V,Smith HM
    A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.
    Planta, 2009. 229(3): p. 693-707
  89. Szczesny T,Routier-Kierzkowska AL,Kwiatkowska D
    Influence of clavata3-2 mutation on early flower development in Arabidopsis thaliana: quantitative analysis of changing geometry.
    J. Exp. Bot., 2009. 60(2): p. 679-95
  90. Urbanus SL, et al.
    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana.
    BMC Plant Biol., 2009. 9: p. 5
  91. Cheng H, et al.
    Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis.
    PLoS Genet., 2009. 5(3): p. e1000440
  92. Nardmann J,Reisewitz P,Werr W
    Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.
    Mol. Biol. Evol., 2009. 26(8): p. 1745-55
  93. Maier AT, et al.
    Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression.
    Development, 2009. 136(10): p. 1613-20
  94. Stahl Y,Wink RH,Ingram GC,Simon R
    A signaling module controlling the stem cell niche in Arabidopsis root meristems.
    Curr. Biol., 2009. 19(11): p. 909-14
  95. Su YH, et al.
    Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis.
    Plant J., 2009. 59(3): p. 448-60
  96. Mantegazza R,Tononi P,M
    WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae).
    Planta, 2009. 230(3): p. 529-42
  97. Krizek B
    AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.
    Plant Physiol., 2009. 150(4): p. 1916-29
  98. Liu JX,Srivastava R,Howell S
    Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype.
    Planta, 2009. 230(4): p. 687-97
  99. Chen SK, et al.
    The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula.
    Planta, 2009. 230(4): p. 827-40
  100. Ming F,Ma H
    A terminator of floral stem cells.
    Genes Dev., 2009. 23(15): p. 1705-8
  101. Sun B,Xu Y,Ng KH,Ito T
    A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem.
    Genes Dev., 2009. 23(15): p. 1791-804
  102. Francischini CW,Quaggio RB
    Molecular characterization of Arabidopsis thaliana PUF proteins--binding specificity and target candidates.
    FEBS J., 2009. 276(19): p. 5456-70
  103. Brambilla V,Kater M,Colombo L
    Ovule integument identity determination in Arabidopsis.
    Plant Signal Behav, 2008. 3(4): p. 246-7
  104. Han P,Zhu YX
    BARD1 may be renamed ROW1 because it functions mainly as a REPRESSOR OF WUSCHEL1.
    Plant Signal Behav, 2009. 4(1): p. 52-4
  105. Gordon SP,Chickarmane VS,Ohno C,Meyerowitz EM
    Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(38): p. 16529-34
  106. Sablowski R
    Cytokinin and WUSCHEL tie the knot around plant stem cells.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(38): p. 16016-7
  107. Stahl Y,Simon R
    Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4?
    Plant Signal Behav, 2009. 4(7): p. 634-5
  108. Ikeda M,Mitsuda N,Ohme-Takagi M
    Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning.
    Plant Cell, 2009. 21(11): p. 3493-505
  109. Buechel S, et al.
    Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration.
    Eur. J. Cell Biol., 2010 Feb-Mar. 89(2-3): p. 279-84
  110. Roudier F, et al.
    Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis.
    Plant Cell, 2010. 22(2): p. 364-75
  111. Finlayson SA,Krishnareddy SR,Kebrom TH,Casal JJ
    Phytochrome regulation of branching in Arabidopsis.
    Plant Physiol., 2010. 152(4): p. 1914-27
  112. Zhu Y,Wan Y,Lin J
    Multiple receptor complexes assembled for transmitting CLV3 signaling in Arabidopsis.
    Plant Signal Behav, 2010. 5(3): p. 300-2
  113. Sijacic P,Liu Z
    Novel insights from live-imaging in shoot meristem development.
    J Integr Plant Biol, 2010. 52(4): p. 393-9
  114. Klimaszewska K,Pelletier G,Overton C,Stewart D,Rutledge RG
    Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth.
    Plant Cell Rep., 2010. 29(7): p. 723-34
  115. Busch W, et al.
    Transcriptional control of a plant stem cell niche.
    Dev. Cell, 2010. 18(5): p. 849-61
  116. Vanhaeren H,Gonzalez N,Inz
    Hide and seek: uncloaking the vegetative shoot apex of Arabidopsis thaliana.
    Plant J., 2010. 63(3): p. 541-8
  117. Cheng ZJ,Zhu SS,Gao XQ,Zhang XS
    Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis.
    Plant Cell Rep., 2010. 29(8): p. 927-33
  118. Wang X, et al.
    A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana.
    Mol. Plant Pathol., 2005. 6(2): p. 187-91
  119. Aggarwal P,Yadav RK,Reddy GV
    Identification of novel markers for stem-cell niche of Arabidopsis shoot apex.
    Gene Expr. Patterns, 2010. 10(6): p. 259-64
  120. Hirakawa Y,Kondo Y,Fukuda H
    TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis.
    Plant Cell, 2010. 22(8): p. 2618-29
  121. Zhang Z, et al.
    Convergence of the 26S proteasome and the REVOLUTA pathways in regulating inflorescence and floral meristem functions in Arabidopsis.
    J. Exp. Bot., 2011. 62(1): p. 359-69
  122. Kondo Y,Hirakawa Y,Kieber JJ,Fukuda H
    CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling.
    Plant Cell Physiol., 2011. 52(1): p. 37-48
  123. Yadav RK,Tavakkoli M,Reddy GV
    WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors.
    Development, 2010. 137(21): p. 3581-9
  124. Betsuyaku S, et al.
    Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis.
    Plant Cell Physiol., 2011. 52(1): p. 14-29
  125. Zhang X,Zong J,Liu J,Yin J,Zhang D
    Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    J Integr Plant Biol, 2010. 52(11): p. 1016-26
  126. Kinoshita A, et al.
    RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis.
    Development, 2010. 137(22): p. 3911-20
  127. Wong CE,Khor SY,Bhalla PL,Singh MB
    Novel spatial expression of soybean WUSCHEL in the incipient floral primordia.
    Planta, 2011. 233(3): p. 553-60
  128. Chandler JW,Cole M,Jacobs B,Comelli P,Werr W
    Genetic integration of DORNR
    Plant Mol. Biol., 2011. 75(3): p. 223-36
  129. Wahl V,Brand LH,Guo YL,Schmid M
    The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana.
    BMC Plant Biol., 2010. 10: p. 285
  130. Bartrina I,Otto E,Strnad M,Werner T,Schm
    Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana.
    Plant Cell, 2011. 23(1): p. 69-80
  131. Nimchuk ZL,Tarr PT,Ohno C,Qu X,Meyerowitz EM
    Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase.
    Curr. Biol., 2011. 21(5): p. 345-52
  132. Yadav RK,Reddy GV
    WUSCHEL-mediated cellular feedback network imparts robustness to stem cell homeostasis.
    Plant Signal Behav, 2011. 6(4): p. 544-6
  133. Elhiti M,Stasolla C
    Ectopic expression of the Brassica SHOOTMERISTEMLESS attenuates the deleterious effects of the auxin transport inhibitor TIBA on somatic embryo number and morphology.
    Plant Sci., 2011. 180(2): p. 383-90
  134. Gagne JM,Gish LA,Clark SE
    The role of the acyl modification, palmitoylation, in Arabidopsis stem cell regulation.
    Plant Signal Behav, 2010. 5(8): p. 1048-51
  135. Fujita H,Toyokura K,Okada K,Kawaguchi M
    Reaction-diffusion pattern in shoot apical meristem of plants.
    PLoS ONE, 2011. 6(3): p. e18243
  136. Kavaĭ-ool UN,Karpenko OIu,Ezhova TA
    [Interaction between the PINOID/ABRUPTUS gene with the AGAMOUS gene: the negative regulator of stem cells in the meristem of Arabidopsis thaliana flower].
    Ontogenez, 2011 Mar-Apr. 42(2): p. 146-50
  137. Zhang Y, et al.
    Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis.
    J Integr Plant Biol, 2011. 53(6): p. 493-506
  138. Lieber D,Lora J,Schrempp S,Lenhard M,Laux T
    Arabidopsis WIH1 and WIH2 genes act in the transition from somatic to reproductive cell fate.
    Curr. Biol., 2011. 21(12): p. 1009-17
  139. Durbak AR,Tax FE
    CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems.
    Genetics, 2011. 189(1): p. 177-94
  140. Chung K,Tasaka M
    RPT2a, a 26S proteasome AAA-ATPase, is directly involved in Arabidopsis CC-NBS-LRR protein uni-1D-induced signaling pathways.
    Plant Cell Physiol., 2011. 52(9): p. 1657-64
  141. Li W, et al.
    DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling.
    PLoS Genet., 2011. 7(8): p. e1002243
  142. Yadav RK, et al.
    WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex.
    Genes Dev., 2011. 25(19): p. 2025-30
  143. Liu X, et al.
    AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins.
    Plant Cell, 2011. 23(10): p. 3654-70
  144. Nardmann J,Werr W
    The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns.
    Plant Mol. Biol., 2012. 78(1-2): p. 123-34
  145. Nakano T, et al.
    MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development.
    Plant Physiol., 2012. 158(1): p. 439-50
  146. Xiang D, et al.
    POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis.
    Plant Cell, 2011. 23(12): p. 4348-67
  147. Osipova MA, et al.
    Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation.
    Plant Physiol., 2012. 158(3): p. 1329-41
  148. Song XF, et al.
    Contributions of individual amino acid residues to the endogenous CLV3 function in shoot apical meristem maintenance in Arabidopsis.
    Mol Plant, 2012. 5(2): p. 515-23
  149. Qiao M, et al.
    Proper regeneration from in vitro cultured Arabidopsis thaliana requires the microRNA-directed action of an auxin response factor.
    Plant J., 2012. 71(1): p. 14-22
  150. Chickarmane VS,Gordon SP,Tarr PT,Heisler MG,Meyerowitz EM
    Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(10): p. 4002-7
  151. Zhao L, et al.
    Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants.
    J. Exp. Bot., 2012. 63(8): p. 3257-70
  152. Yadav RK,Reddy GV
    WUSCHEL protein movement and stem cell homeostasis.
    Plant Signal Behav, 2012. 7(5): p. 592-4
  153. Liu Y, et al.
    CCS52A2/FZR1, a cell cycle regulator, is an essential factor for shoot apical meristem maintenance in Arabidopsis thaliana.
    BMC Plant Biol., 2012. 12: p. 135
  154. Uchida N,Shimada M,Tasaka M
    ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem.
    Plant Cell Physiol., 2013. 54(3): p. 343-51
  155. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
  156. Kiyohara S,Sawa S
    CLE signaling systems during plant development and nematode infection.
    Plant Cell Physiol., 2012. 53(12): p. 1989-99
  157. Sang Y, et al.
    Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects.
    Plant J., 2012. 72(6): p. 1000-14
  158. Chatfield SP, et al.
    Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems.
    Plant J., 2013. 73(5): p. 798-813
  159. Salemme M,Sica M,Gaudio L,Aceto S
    The OitaAG and OitaSTK genes of the orchid Orchis italica: a comparative analysis with other C- and D-class MADS-box genes.
    Mol. Biol. Rep., 2013. 40(5): p. 3523-35
  160. Knauer S, et al.
    A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem.
    Dev. Cell, 2013. 24(2): p. 125-32
  161. Qiao M,Xiang F
    A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro.
    Plant Signal Behav, 2013. 8(3): p. e23479
  162. Sun X,Feng Z,Meng L,Zhu J,Geitmann A
    Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression.
    Planta, 2013. 237(5): p. 1367-78
  163. Elhiti M, et al.
    Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis.
    Plant J., 2013. 74(6): p. 946-58
  164. Bouchabk
    Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro.
    Plant Cell Rep., 2013. 32(5): p. 675-86
  165. Yadav RK, et al.
    Plant stem cell maintenance involves direct transcriptional repression of differentiation program.
    Mol. Syst. Biol., 2013. 9: p. 654
  166. Liu Z, et al.
    GUS activity for miR165a/166b, REV, and WUS/CLV3 in in vitro direct Arabidopsis thaliana shoot regeneration.
    Protoplasma, 2013. 250(5): p. 1213-8
  167. Gish LA,Gagne JM,Han L,Deyoung BJ,Clark SE
    WUSCHEL-responsive At5g65480 interacts with CLAVATA components in vitro and in transient expression.
    PLoS ONE, 2013. 8(6): p. e66345
  168. Liu C, et al.
    Phosphatidylserine synthase 1 is required for inflorescence meristem and organ development in Arabidopsis.
    J Integr Plant Biol, 2013. 55(8): p. 682-95
  169. Chu H, et al.
    A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice.
    J. Exp. Bot., 2013. 64(17): p. 5359-69
  170. Zhang D, et al.
    Ectopic expression of WUS in hypocotyl promotes cell division via GRP23 in Arabidopsis.
    PLoS ONE, 2013. 8(9): p. e75773
  171. Wong CE,Singh MB,Bhalla PL
    Spatial expression of CLAVATA3 in the shoot apical meristem suggests it is not a stem cell marker in soybean.
    J. Exp. Bot., 2013. 64(18): p. 5641-9
  172. Yue M, et al.
    Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem.
    PLoS ONE, 2013. 8(12): p. e83258
  173. Mandel T, et al.
    The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity.
    Development, 2014. 141(4): p. 830-41
  174. Zheng W, et al.
    AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum.
    PLoS ONE, 2014. 9(1): p. e87502
  175. Schuster C, et al.
    A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals.
    Dev. Cell, 2014. 28(4): p. 438-49
  176. Zhou F,Roy B,Dunlap JR,Enganti R,von Arnim AG
    Translational control of Arabidopsis meristem stability and organogenesis by the eukaryotic translation factor eIF3h.
    PLoS ONE, 2014. 9(4): p. e95396
  177. Scofield S,Dewitte W,Murray JA
    STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1.
    Plant Signal Behav, 2018.
  178. Wynn AN,Seaman AA,Jones AL,Franks RG
    Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development.
    Front Plant Sci, 2014. 5: p. 130
  179. Liu X, et al.
    DNA topoisomerase I affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis.
    Plant Cell, 2014. 26(7): p. 2803-17
  180. Daum G,Medzihradszky A,Suzaki T,Lohmann JU
    A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(40): p. 14619-24
  181. Zhou Y, et al.
    Control of plant stem cell function by conserved interacting transcriptional regulators.
    Nature, 2015. 517(7534): p. 377-80
  182. Wu G,Rossidivito G,Hu T,Berlyand Y,Poethig RS
    Traffic lines: new tools for genetic analysis in Arabidopsis thaliana.
    Genetics, 2015. 200(1): p. 35-45
  183. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  184. Shinohara H,Matsubayashi Y
    Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view.
    Plant J., 2015. 82(2): p. 328-36
  185. Nimchuk ZL,Zhou Y,Tarr PT,Peterson BA,Meyerowitz EM
    Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases.
    Development, 2015. 142(6): p. 1043-9
  186. Cui Y, et al.
    AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards.
    Plant Cell Environ., 2015. 38(10): p. 2098-114
  187. Cao X,He Z,Guo L,Liu X
    Epigenetic Mechanisms Are Critical for the Regulation of WUSCHEL Expression in Floral Meristems.
    Plant Physiol., 2015. 168(4): p. 1189-96
  188. Tanaka W, et al.
    Axillary Meristem Formation in Rice Requires the WUSCHEL Ortholog TILLERS ABSENT1.
    Plant Cell, 2015. 27(4): p. 1173-84
  189. Landau U,Asis L,Eshed Williams L
    The ERECTA, CLAVATA and class III HD-ZIP Pathways Display Synergistic Interactions in Regulating Floral Meristem Activities.
    PLoS ONE, 2015. 10(5): p. e0125408
  190. Lee C,Clark SE
    A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis.
    PLoS ONE, 2015. 10(5): p. e0126006
  191. Liang Z,Brown RC,Fletcher JC,Opsahl-Sorteberg HG
    Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.
    Plant Cell Physiol., 2015. 56(9): p. 1855-66
  192. Shemer O,Landau U,Candela H,Zemach A,Eshed Williams L
    Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation.
    Plant Sci., 2015. 238: p. 251-61
  193. Han Y,Jiao Y
    APETALA1 establishes determinate floral meristem through regulating cytokinins homeostasis in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e989039
  194. Poulios S,Vlachonasios KE
    Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana.
    J. Exp. Bot., 2016. 67(3): p. 905-18
  195. Kong D,Hao Y,Cui H
    The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana.
    Mol Plant, 2016. 9(2): p. 261-270
  196. Yamada T,Sasaki Y,Hashimoto K,Nakajima K,Gasser CS
    CORONA, PHABULOSA and PHAVOLUTA collaborate with BELL1 to confine WUSCHEL expression to the nucellus in Arabidopsis ovules.
    Development, 2016. 143(3): p. 422-6
  197. Chou H,Zhu Y,Ma Y,Berkowitz GA
    The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+) as a secondary cytosolic messenger.
    Plant J., 2016. 85(4): p. 494-506
  198. Guzmán-López JA,Abraham-Juárez MJ,Lozano-Sotomayor P,de Folter S,Simpson J
    Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity.
    Plant Mol. Biol., 2016. 91(1-2): p. 37-51
  199. Adibi M,Yoshida S,Weijers D,Fleck C
    Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization.
    PLoS ONE, 2016. 11(2): p. e0147830
  200. Dolzblasz A, et al.
    Stem Cell Regulation by Arabidopsis WOX Genes.
    Mol Plant, 2016. 9(7): p. 1028-39
  201. Lin TF,Saiga S,Abe M,Laux T
    OBE3 and WUS Interaction in Shoot Meristem Stem Cell Regulation.
    PLoS ONE, 2016. 11(5): p. e0155657
  202. Lee DK,Parrott DL,Adhikari E,Fraser N,Sieburth LE
    The Mobile bypass Signal Arrests Shoot Growth by Disrupting Shoot Apical Meristem Maintenance, Cytokinin Signaling, and WUS Transcription Factor Expression.
    Plant Physiol., 2016. 171(3): p. 2178-90
  203. Nardmann J,Chandler JW,Werr W
    Stem Cell Fate versus Differentiation: the Missing Link.
    Trends Plant Sci., 2016. 21(9): p. 725-727
  204. Li D, et al.
    FAR-RED ELONGATED HYPOCOTYL3 activates SEPALLATA2 but inhibits CLAVATA3 to regulate meristem determinacy and maintenance in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(33): p. 9375-80
  205. Huang Z, et al.
    APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana.
    New Phytol., 2017. 215(3): p. 1197-1209
  206. Dory M, et al.
    Kinase-Associated Phosphoisoform Assay: a novel candidate-based method to detect specific kinase-substrate phosphorylation interactions in vivo.
    BMC Plant Biol., 2016. 16(1): p. 204
  207. Rodriguez K, et al.
    DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(41): p. E6307-E6315
  208. Perales M, et al.
    Threshold-dependent transcriptional discrimination underlies stem cell homeostasis.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(41): p. E6298-E6306
  209. Keren I,Citovsky V
    The histone deubiquitinase OTLD1 targets euchromatin to regulate plant growth.
    Sci Signal, 2016. 9(459): p. ra125
  210. Zhang Y,Jiao Y,Jiao H,Zhao H,Zhu YX
    Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution.
    Mol. Biol. Evol., 2017. 34(3): p. 640-653
  211. Zhang Z,Tucker E,Hermann M,Laux T
    A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells.
    Dev. Cell, 2017. 40(3): p. 264-277.e4
  212. Singh S, et al.
    Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components.
    Sci Rep, 2017. 7: p. 42450
  213. Adibi M,Yoshida S,Weijers D,Fleck C
    Correction: Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization.
    PLoS ONE, 2017. 12(3): p. e0174751
  214. Nimchuk ZL
    CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop.
    PLoS Genet., 2017. 13(3): p. e1006681
  215. Zhang TQ, et al.
    A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration.
    Plant Cell, 2017. 29(5): p. 1073-1087
  216. Xin W,Wang Z,Liang Y,Wang Y,Hu Y
    Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis.
    J. Plant Physiol., 2017. 214: p. 1-6
  217. Zhao X, et al.
    RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis.
    Science, 2017.
  218. Wang J, et al.
    Cytokinin Signaling Activates WUSCHEL Expression during Axillary Meristem Initiation.
    Plant Cell, 2017. 29(6): p. 1373-1387
  219. Meng WJ, et al.
    Type-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of WUSCHEL.
    Plant Cell, 2017. 29(6): p. 1357-1372
  220. Zubo YO, et al.
    Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(29): p. E5995-E6004
  221. Dai X, et al.
    ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression.
    J Integr Plant Biol, 2017. 59(10): p. 747-758
  222. Yang M, et al.
    Genomic architecture of biomass heterosis in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(30): p. 8101-8106
  223. Zhang F,May A,Irish VF
    Trends Plant Sci., 2017. 22(10): p. 815-817
  224. Liu H,Zhang H,Dong YX,Hao YJ,Zhang XS
    DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis.
    New Phytol., 2018. 217(1): p. 219-232
  225. Huang Y,Cui Y,Hou X,Huang T
    The AtMC4 regulates the stem cell homeostasis in Arabidopsis by catalyzing the cleavage of AtLa1 protein in response to environmental hazards.
    Plant Sci., 2018. 266: p. 64-75
  226. Bollier N, et al.
    At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato.
    Plant Cell, 2018. 30(1): p. 83-100
  227. Shin J,Jeong G,Park JY,Kim H,Lee I
    MUN (MERISTEM UNSTRUCTURED), encoding a SPC24 homolog of NDC80 kinetochore complex, affects development through cell division in Arabidopsis thaliana.
    Plant J., 2018. 93(6): p. 977-991
  228. Liu J, et al.
    The WOX11-LBD16 Pathway Promotes Pluripotency Acquisition in Callus Cells During De Novo Shoot Regeneration in Tissue Culture.
    Plant Cell Physiol., 2018. 59(4): p. 734-743
  229. Landrein B, et al.
    Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins.
    Proc. Natl. Acad. Sci. U.S.A., 2018. 115(6): p. 1382-1387
  230. Balanzà V, et al.
    Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway.
    Nat Commun, 2018. 9(1): p. 565
  231. Snipes SA, et al.
    Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription.
    PLoS Genet., 2018. 14(4): p. e1007351
  232. Xie M, et al.
    A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development.
    Nat Commun, 2018. 9(1): p. 1604
  233. Laux T,Mayer KF,Berger J,Jürgens G
    The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis.
    Development, 1996. 122(1): p. 87-96
  234. Endrizzi K,Moussian B,Haecker A,Levin JZ,Laux T
    The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE.
    Plant J., 1996. 10(6): p. 967-79
  235. Mayer KF, et al.
    Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem.
    Cell, 1998. 95(6): p. 805-15