PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G80840.1
Common NameATWRKY40, F23A5.19, WRKY40
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family WRKY
Protein Properties Length: 302aa    MW: 33696 Da    PI: 8.5418
Description WRKY DNA-binding protein 40
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G80840.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1WRKY90.71.2e-28145204159
                  ---SS-EEEEEEE--TT-SS-EEEEEE-ST.T---EEEEEE-SSSTTEEEEEEES--SS- CS
         WRKY   1 ldDgynWrKYGqKevkgsefprsYYrCtsa.gCpvkkkversaedpkvveitYegeHnhe 59 
                  ++Dgy+WrKYGqK+ ++++ pr+Y++C+ a +C+vkkkv+rs ed++v++ tYegeHnh+
  AT1G80840.1 145 VKDGYQWRKYGQKVTRDNPSPRAYFKCACApSCSVKKKVQRSVEDQSVLVATYEGEHNHP 204
                  58**************************999****************************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:2.20.25.803.3E-27139206IPR003657WRKY domain
PROSITE profilePS5081126.773140206IPR003657WRKY domain
SuperFamilySSF1182901.44E-24141206IPR003657WRKY domain
SMARTSM007742.7E-31145205IPR003657WRKY domain
PfamPF031063.8E-23146204IPR003657WRKY domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0002237Biological Processresponse to molecule of bacterial origin
GO:0002238Biological Processresponse to molecule of fungal origin
GO:0009409Biological Processresponse to cold
GO:0009414Biological Processresponse to water deprivation
GO:0009611Biological Processresponse to wounding
GO:0009623Biological Processresponse to parasitic fungus
GO:0009651Biological Processresponse to salt stress
GO:0009685Biological Processgibberellin metabolic process
GO:0009723Biological Processresponse to ethylene
GO:0009737Biological Processresponse to abscisic acid
GO:0009751Biological Processresponse to salicylic acid
GO:0009753Biological Processresponse to jasmonic acid
GO:0009938Biological Processnegative regulation of gibberellic acid mediated signaling pathway
GO:0010200Biological Processresponse to chitin
GO:0042742Biological Processdefense response to bacterium
GO:0045892Biological Processnegative regulation of transcription, DNA-templated
GO:0050691Biological Processregulation of defense response to virus by host
GO:0050832Biological Processdefense response to fungus
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
GO:1990841Molecular Functionpromoter-specific chromatin binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025034anatomyleaf
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001185developmental stageplant embryo globular stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 302 aa     Download sequence    Send to blast
MDQYSSSLVD TSLDLTIGVT RMRVEEDPPT SALVEELNRV SAENKKLSEM LTLMCDNYNV  60
LRKQLMEYVN KSNITERDQI SPPKKRKSPA REDAFSCAVI GGVSESSSTD QDEYLCKKQR  120
EETVVKEKVS RVYYKTEASD TTLVVKDGYQ WRKYGQKVTR DNPSPRAYFK CACAPSCSVK  180
KKVQRSVEDQ SVLVATYEGE HNHPMPSQID SNNGLNRHIS HGGSASTPVA ANRRSSLTVP  240
VTTVDMIESK KVTSPTSRID FPQVQKLLVE QMASSLTKDP NFTAALAAAV TGKLYQQNHT  300
EK
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1wj2_A2e-201442071678Probable WRKY transcription factor 4
2lex_A2e-201442071678Probable WRKY transcription factor 4
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.281880.0bud| inflorescence| seed
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible261892_at0.0
Expression AtlasAT1G80840-
AtGenExpressAT1G80840-
ATTED-IIAT1G80840-
Functional Description ? help Back to Top
Source Description
TAIRPathogen-induced transcription factor. Binds W-box sequences in vitro. Forms protein complexes with itself and with WRKY40 and WRKY60. Coexpression with WRKY18 or WRKY60 made plants more susceptible to both P. syringae and B. cinerea. WRKY18, WRKY40, and WRKY60 have partially redundant roles in response to the hemibiotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea, with WRKY18 playing a more important role than the other two.
UniProtTranscription factor (By similarity). Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis-acting element (By similarity). {ECO:0000250|UniProtKB:Q9SUP6}.
Function -- GeneRIF ? help Back to Top
  1. WRKY40 interacts both physically and functionally with WRKY18 and WRKY60 in a complex pattern of overlapping, antagonistic, and distinct roles in plant responses to different types of microbial pathogens.
    [PMID: 16603654]
  2. Loss-of-WRKY18/40 positively affects pre-invasion resistance to G. orontii.
    [PMID: 21143673]
  3. Data suggest that WRKY18, WRKY40 and WRKY60 form a highly interacting regulatory network that modulates gene expression in both plant defense and stress responses by acting as either transcription activator or repressor.
    [PMID: 21167067]
  4. AtWRKY40 and AtWRKY63 are particularly involved in regulating the expression of genes responding commonly to both mitochondrial and chloroplast dysfunction but not of genes responding to either mitochondrial or chloroplast perturbation.
    [PMID: 23509177]
  5. Comprehensive infection studies demonstrated the specificity of wrky18 wrky40-mediated Golovinomyces orontii resistance. WRKY18 and WRKY40 act as positive regulators in effector-triggered immunity.
    [PMID: 23617415]
  6. WRKY40 transcription factor binds the promoters of the light-harvesting chlorophyll a/b-binding proteins and inhibits their expression.
    [PMID: 24078667]
  7. provide evidence that CPN20 functions through antagonizing the ABAR-WRKY40 coupled pathway, and ABA relieves this pathway of repression by inhibiting the ABAR-CPN20 interaction to activate ABAR-WRKY40 interaction
    [PMID: 24369350]
  8. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal.WRKY40 and WRKY6 mediate inhibition of root elongation by E-2-hexenal.
    [PMID: 26243404]
  9. WRKY18 and WRKY40, but not WRKY60, co-localise with PIF3, PIF4 and PHYB to Phytochrome B-containing nuclear bodies.
    [PMID: 26293691]
  10. subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity.
    [PMID: 26479147]
  11. Binding of WRKY18, WRKY40, and WRKY33 to promoters of genes Implicated in microbe-associated molecular patterns (MAMPs)-triggered Immunity.
    [PMID: 28011690]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00251DAP27203113Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT1G80840.1
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDsalicylic acid
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G80840
IntActSearch Q9SAH7
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G80840
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF4801490.0AF480149.1 Arabidopsis thaliana WRKY transcription factor 40 (WRKY40) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_178199.10.0WRKY DNA-binding protein 40
SwissprotQ9SAH70.0WRK40_ARATH; Probable WRKY transcription factor 40
TrEMBLD7KWM90.0D7KWM9_ARALL; WRKY DNA-binding protein 40
STRINGAT1G80840.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM24772872
Representative plantOGRP1417875
Publications ? help Back to Top
  1. Eulgem T,Rushton PJ,Robatzek S,Somssich IE
    The WRKY superfamily of plant transcription factors.
    Trends Plant Sci., 2000. 5(5): p. 199-206
    [PMID:10785665]
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  3. Chen C,Chen Z
    Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor.
    Plant Physiol., 2002. 129(2): p. 706-16
    [PMID:12068113]
  4. Dong J,Chen C,Chen Z
    Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response.
    Plant Mol. Biol., 2003. 51(1): p. 21-37
    [PMID:12602888]
  5. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  6. Hoth S, et al.
    Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana.
    FEBS Lett., 2003. 554(3): p. 373-80
    [PMID:14623097]
  7. Xu X,Chen C,Fan B,Chen Z
    Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors.
    Plant Cell, 2006. 18(5): p. 1310-26
    [PMID:16603654]
  8. Shen QH, et al.
    Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses.
    Science, 2007. 315(5815): p. 1098-103
    [PMID:17185563]
  9. Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
    Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.
    Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11
    [PMID:17722694]
  10. Walley JW, et al.
    Mechanical stress induces biotic and abiotic stress responses via a novel cis-element.
    PLoS Genet., 2007. 3(10): p. 1800-12
    [PMID:17953483]
  11. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
    [PMID:18650403]
  12. Kim KC,Lai Z,Fan B,Chen Z
    Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense.
    Plant Cell, 2008. 20(9): p. 2357-71
    [PMID:18776063]
  13. Mitsuya Y, et al.
    Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus.
    J. Plant Physiol., 2009. 166(6): p. 626-43
    [PMID:18922600]
  14. Chang IF, et al.
    Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.
    Proteomics, 2009. 9(11): p. 2967-85
    [PMID:19452453]
  15. Peng Y, et al.
    OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice.
    Mol Plant, 2008. 1(3): p. 446-58
    [PMID:19825552]
  16. Shang Y, et al.
    The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition.
    Plant Cell, 2010. 22(6): p. 1909-35
    [PMID:20543028]
  17. Pandey SP,Roccaro M,Sch
    Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.
    Plant J., 2010. 64(6): p. 912-23
    [PMID:21143673]
  18. Chen H, et al.
    Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress.
    BMC Plant Biol., 2010. 10: p. 281
    [PMID:21167067]
  19. Jiang T,Zhang XF,Wang XF,Zhang DP
    Arabidopsis 3-ketoacyl-CoA thiolase-2 (KAT2), an enzyme of fatty acid β-oxidation, is involved in ABA signal transduction.
    Plant Cell Physiol., 2011. 52(3): p. 528-38
    [PMID:21257607]
  20. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
    [PMID:21798944]
  21. Brotman Y, et al.
    Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana.
    Microbiology (Reading, Engl.), 2012. 158(Pt 1): p. 139-46
    [PMID:21852347]
  22. Wenke K, et al.
    Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function.
    Plant J., 2012. 70(3): p. 445-59
    [PMID:22188129]
  23. Liu ZQ, et al.
    Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis.
    J. Exp. Bot., 2012. 63(18): p. 6371-92
    [PMID:23095997]
  24. Schweizer F,Bodenhausen N,Lassueur S,Masclaux FG,Reymond P
    Differential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis.
    Front Plant Sci, 2013. 4: p. 13
    [PMID:23382734]
  25. Van Aken O,Zhang B,Law S,Narsai R,Whelan J
    AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins.
    Plant Physiol., 2013. 162(1): p. 254-71
    [PMID:23509177]
  26. Brotman Y, et al.
    Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.
    PLoS Pathog., 2013. 9(3): p. e1003221
    [PMID:23516362]
  27. Luo X, et al.
    Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling.
    J. Exp. Bot., 2013. 64(8): p. 2155-69
    [PMID:23606412]
  28. Sch
    Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.
    Mol. Plant Microbe Interact., 2013. 26(7): p. 758-67
    [PMID:23617415]
  29. Koyama T, et al.
    A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence.
    Plant Physiol., 2013. 162(2): p. 991-1005
    [PMID:23629833]
  30. Zhang XF, et al.
    Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis.
    Plant Mol. Biol., 2013. 83(3): p. 205-18
    [PMID:23783410]
  31. Liu R, et al.
    Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function.
    J. Exp. Bot., 2013. 64(18): p. 5443-56
    [PMID:24078667]
  32. Zhang X, et al.
    Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor.
    Sci China Life Sci, 2014. 57(1): p. 11-21
    [PMID:24369350]
  33. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  34. Zhan GM, et al.
    Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation.
    Plant Cell Rep., 2014. 33(7): p. 1091-108
    [PMID:24682522]
  35. Zhang Y, et al.
    Regulation of oncogene expression in T-DNA-transformed host plant cells.
    PLoS Pathog., 2015. 11(1): p. e1004620
    [PMID:25615824]
  36. Mirabella R, et al.
    WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.
    Plant J., 2015. 83(6): p. 1082-96
    [PMID:26243404]
  37. Geilen K,Böhmer M
    Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in Arabidopsis thaliana.
    Sci Rep, 2015. 5: p. 13369
    [PMID:26293691]
  38. Geilen K,Böhmer M
    Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation.
    Plant Signal Behav, 2015. 10(11): p. e1106659
    [PMID:26479147]
  39. Van Aken O, et al.
    Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases.
    Plant Physiol., 2016. 171(3): p. 2150-65
    [PMID:27208304]
  40. Carrió-Seguí À,Romero P,Sanz A,Peñarrubia L
    Interaction Between ABA Signaling and Copper Homeostasis in Arabidopsis thaliana.
    Plant Cell Physiol., 2016. 57(7): p. 1568-1582
    [PMID:27328696]
  41. Lu K, et al.
    Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance.
    J. Exp. Bot., 2016. 67(17): p. 5009-27
    [PMID:27406784]
  42. Birkenbihl RP,Kracher B,Roccaro M,Somssich IE
    Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.
    Plant Cell, 2017. 29(1): p. 20-38
    [PMID:28011690]
  43. Lee MH,Jeon HS,Kim HG,Park OK
    An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164.
    New Phytol., 2017. 214(1): p. 343-360
    [PMID:28032643]
  44. Zhang S, et al.
    The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.
    Plant Physiol., 2017. 173(4): p. 2294-2307
    [PMID:28250067]
  45. Cheng P, et al.
    The ERA-Related GTPase AtERG2 Associated with Mitochondria 18S RNA Is Essential for Early Embryo Development in Arabidopsis.
    Front Plant Sci, 2018. 9: p. 182
    [PMID:29497438]