PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G52890.1
Common NameANAC, ANAC019, F14G24.16, NAC019
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family NAC
Protein Properties Length: 317aa    MW: 35814.8 Da    PI: 6.4061
Description NAC domain containing protein 19
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G52890.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1NAM1645.4e-51141391128
          NAM   1 lppGfrFhPtdeelvveyLkkkvegkkleleevikevdiykvePwdLpkkvkaeekewyfFskrdkkyatgkrknratksgyWkatgkdkevlskkge 98 
                  lppGfrF Ptdeel+v+yL++k++g +++l + i+e+d+yk++Pw Lp+k+  +ekewyfFs+rd+ky++g+r+nr++ sgyWkatg+dk + + +g+
  AT1G52890.1  14 LPPGFRFYPTDEELMVQYLCRKAAGYDFSL-QLIAEIDLYKFDPWVLPNKALFGEKEWYFFSPRDRKYPNGSRPNRVAGSGYWKATGTDKIIST-EGQ 109
                  79***************************9.89***************8888899*********************************999988.999 PP

          NAM  99 lvglkktLvfykgrapkgektdWvmheyrl 128
                   vg+kk Lvfy g+apkg+kt+W+mheyrl
  AT1G52890.1 110 RVGIKKALVFYIGKAPKGTKTNWIMHEYRL 139
                  ****************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019416.02E-6610162IPR003441NAC domain
PROSITE profilePS5100559.54914162IPR003441NAC domain
PfamPF023651.5E-2515139IPR003441NAC domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0007275Biological Processmulticellular organism development
GO:0009414Biological Processresponse to water deprivation
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 317 aa     Download sequence    Send to blast
MGIQETDPLT QLSLPPGFRF YPTDEELMVQ YLCRKAAGYD FSLQLIAEID LYKFDPWVLP  60
NKALFGEKEW YFFSPRDRKY PNGSRPNRVA GSGYWKATGT DKIISTEGQR VGIKKALVFY  120
IGKAPKGTKT NWIMHEYRLI EPSRRNGSTK LDDWVLCRIY KKQSSAQKQV YDNGIANARE  180
FSNNGTSSTT SSSSHFEDVL DSFHQEIDNR NFQFSNPNRI SSLRPDLTEQ KTGFHGLADT  240
SNFDWASFAG NVEHNNSVPE LGMSHVVPNL EYNCGYLKTE EEVESSHGFN NSGELAQKGY  300
GVDSFGYSGQ VGGFGFM
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3swm_A1e-12411687174NAC domain-containing protein 19
3swm_B1e-12411687174NAC domain-containing protein 19
3swm_C1e-12411687174NAC domain-containing protein 19
3swm_D1e-12411687174NAC domain-containing protein 19
3swp_A1e-12411687174NAC domain-containing protein 19
3swp_B1e-12411687174NAC domain-containing protein 19
3swp_C1e-12411687174NAC domain-containing protein 19
3swp_D1e-12411687174NAC domain-containing protein 19
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.286210.0floral meristem| leaf
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible260203_at0.0
Expression AtlasAT1G52890-
AtGenExpressAT1G52890-
ATTED-IIAT1G52890-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in stems, flowers, cauline leaves and rosettes. {ECO:0000269|PubMed:12646039, ECO:0000269|PubMed:15319476}.
Functional Description ? help Back to Top
Source Description
TAIRencodes a NAC transcription factor whose expression is induced by drought, high salt, and abscisic acid. This gene binds to ERD1 promoter in vitro.
UniProtTranscription factors that bind specifically to the 5'-CATGTG-3' motif. {ECO:0000269|PubMed:15319476}.
Function -- GeneRIF ? help Back to Top
  1. The anac019 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression.
    [PMID: 18427573]
  2. ANAC019 and AtMYB3 specifically interact with the C-terminal region (640-967) of AtCPL1 containing two double-stranded RNA binding motifs.
    [PMID: 18541146]
  3. ANAC019 was identified as a new positive regulator of abscisic acid signalling.
    [PMID: 19995345]
  4. The DNA-binding domain of ANAC019 inserts the edge of its core beta-sheet into the major groove, while leaving the DNA largely undistorted.
    [PMID: 22455904]
  5. Gene expression analysis in mutants of ANAC019 and ANAC055 at different times during leaf senescence has revealed a distinctly different role for each of these genes.
    [PMID: 23578292]
  6. Involvement of ANAC019 in the regulation of jasmonic acid-induced chlorophyll degradation
    [PMID: 26407000]
  7. We propose a mechanism in which long-range electrostatic interactions between DNA and the negatively charged C-terminal intrinsically disordered region of ANAC019 turns on the pH dependency of the DNA-binding affinity of the N-terminal DNA-binding domain
    [PMID: 29386103]
  8. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
    [PMID: 30604322]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00012PBM25378322Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT1G52890.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by drought, high salinity and abscisic acid (ABA). Slightly up-regulated by jasmonic acid. Not induced by cold treatment. {ECO:0000269|PubMed:12646039, ECO:0000269|PubMed:15319476}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G02930(A), AT1G20440(A), AT3G45140(A), AT5G24780(A), AT5G51070(A), AT5G52300(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G58100, AT1G69600, AT1G77450
IntActSearch Q9C932
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G52890
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0652680.0AY065268.1 Arabidopsis thaliana putative NAM protein (At1g52890) mRNA, complete cds.
GenBankAY1172240.0AY117224.1 Arabidopsis thaliana putative NAM protein (At1g52890) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_175697.10.0NAC domain containing protein 19
SwissprotQ9C9320.0NAC19_ARATH; NAC domain-containing protein 19
TrEMBLA0A178WEE00.0A0A178WEE0_ARATH; NAC019
STRINGAT1G52890.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM14352795
Representative plantOGRP1715800
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Greve K,La Cour T,Jensen MK,Poulsen FM,Skriver K
    Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization.
    Biochem. J., 2003. 371(Pt 1): p. 97-108
    [PMID:12646039]
  3. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  4. Olsen AN, et al.
    Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family.
    Acta Crystallogr. D Biol. Crystallogr., 2004. 60(Pt 1): p. 112-5
    [PMID:14684901]
  5. Hegedus D, et al.
    Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress.
    Plant Mol. Biol., 2003. 53(3): p. 383-97
    [PMID:14750526]
  6. Hu W,Wang Y,Bowers C,Ma H
    Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis.
    Plant Mol. Biol., 2003. 53(4): p. 545-63
    [PMID:15010618]
  7. Ooka H, et al.
    Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.
    DNA Res., 2003. 10(6): p. 239-47
    [PMID:15029955]
  8. Rizhsky L, et al.
    When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.
    Plant Physiol., 2004. 134(4): p. 1683-96
    [PMID:15047901]
  9. Ernst HA,Olsen AN,Larsen S,Lo Leggio L
    Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors.
    EMBO Rep., 2004. 5(3): p. 297-303
    [PMID:15083810]
  10. Avivi Y, et al.
    Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality.
    Dev. Dyn., 2004. 230(1): p. 12-22
    [PMID:15108305]
  11. Guan Y,Nothnagel EA
    Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures.
    Plant Physiol., 2004. 135(3): p. 1346-66
    [PMID:15235117]
  12. Hass C, et al.
    The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis.
    EMBO J., 2004. 23(16): p. 3290-302
    [PMID:15282545]
  13. Tran LS, et al.
    Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.
    Plant Cell, 2004. 16(9): p. 2481-98
    [PMID:15319476]
  14. Fujita M, et al.
    A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway.
    Plant J., 2004. 39(6): p. 863-76
    [PMID:15341629]
  15. Reymond P, et al.
    A conserved transcript pattern in response to a specialist and a generalist herbivore.
    Plant Cell, 2004. 16(11): p. 3132-47
    [PMID:15494554]
  16. Stanley Kim H, et al.
    Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome.
    Plant J., 2005. 41(2): p. 212-20
    [PMID:15634198]
  17. Sun K,Cui Y,Hauser BA
    Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort.
    Planta, 2005. 222(4): p. 632-42
    [PMID:16133218]
  18. Bi YM, et al.
    Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity.
    Plant J., 2005. 44(4): p. 680-92
    [PMID:16262716]
  19. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  20. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
    [PMID:16553893]
  21. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
    [PMID:16553894]
  22. Mandaokar A, et al.
    Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling.
    Plant J., 2006. 46(6): p. 984-1008
    [PMID:16805732]
  23. Kaplan B, et al.
    Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis.
    Plant Cell, 2006. 18(10): p. 2733-48
    [PMID:16980540]
  24. Tran LS, et al.
    Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis.
    Plant J., 2007. 49(1): p. 46-63
    [PMID:17233795]
  25. de Torres-Zabala M, et al.
    Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease.
    EMBO J., 2007. 26(5): p. 1434-43
    [PMID:17304219]
  26. Liu JX,Srivastava R,Che P,Howell SH
    Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling.
    Plant J., 2007. 51(5): p. 897-909
    [PMID:17662035]
  27. Yan Y, et al.
    A downstream mediator in the growth repression limb of the jasmonate pathway.
    Plant Cell, 2007. 19(8): p. 2470-83
    [PMID:17675405]
  28. Jung C, et al.
    Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis.
    Plant Physiol., 2008. 146(2): p. 623-35
    [PMID:18162593]
  29. Bu Q, et al.
    Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses.
    Cell Res., 2008. 18(7): p. 756-67
    [PMID:18427573]
  30. Bang WY,Kim SW,Jeong IS,Koiwa H,Bahk JD
    The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors.
    Biochem. Biophys. Res. Commun., 2008. 372(4): p. 907-12
    [PMID:18541146]
  31. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
    [PMID:18650403]
  32. Krishnaswamy SS, et al.
    Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana.
    BMC Plant Biol., 2008. 8: p. 91
    [PMID:18783601]
  33. Kunieda T, et al.
    NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis.
    Plant Cell, 2008. 20(10): p. 2631-42
    [PMID:18849494]
  34. Nakashima K,Ito Y,Yamaguchi-Shinozaki K
    Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses.
    Plant Physiol., 2009. 149(1): p. 88-95
    [PMID:19126699]
  35. Bu Q, et al.
    The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development.
    Plant Physiol., 2009. 150(1): p. 463-81
    [PMID:19286935]
  36. Jiang H,Li H,Bu Q,Li C
    The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response.
    Plant Signal Behav, 2009. 4(5): p. 464-6
    [PMID:19816098]
  37. Jensen MK, et al.
    The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling.
    Biochem. J., 2010. 426(2): p. 183-96
    [PMID:19995345]
  38. de Brevern AG,Joseph AP
    Species specific amino acid sequence-protein local structure relationships: An analysis in the light of a structural alphabet.
    J. Theor. Biol., 2011. 276(1): p. 209-17
    [PMID:21333657]
  39. Welner DH, et al.
    DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors.
    Biochem. J., 2012. 444(3): p. 395-404
    [PMID:22455904]
  40. Zheng XY, et al.
    Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation.
    Cell Host Microbe, 2012. 11(6): p. 587-96
    [PMID:22704619]
  41. Schweizer F,Bodenhausen N,Lassueur S,Masclaux FG,Reymond P
    Differential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis.
    Front Plant Sci, 2013. 4: p. 13
    [PMID:23382734]
  42. Hickman R, et al.
    A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves.
    Plant J., 2013. 75(1): p. 26-39
    [PMID:23578292]
  43. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  44. Guan Q,Yue X,Zeng H,Zhu J
    The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis.
    Plant Cell, 2014. 26(1): p. 438-53
    [PMID:24415771]
  45. Chen F, et al.
    Arabidopsis Phytochrome A Directly Targets Numerous Promoters for Individualized Modulation of Genes in a Wide Range of Pathways.
    Plant Cell, 2014. 26(5): p. 1949-1966
    [PMID:24794133]
  46. Lumba S, et al.
    A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.
    Dev. Cell, 2014. 29(3): p. 360-72
    [PMID:24823379]
  47. Wang X, et al.
    TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana.
    Plant J., 2015. 82(1): p. 151-62
    [PMID:25702611]
  48. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  49. Wang T, et al.
    Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis.
    Plant Physiol., 2015. 169(2): p. 1027-41
    [PMID:26243618]
  50. Zhu X, et al.
    Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes.
    Plant J., 2015. 84(3): p. 597-610
    [PMID:26407000]
  51. Takasaki H, et al.
    SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence.
    Plant J., 2015. 84(6): p. 1114-23
    [PMID:26518251]
  52. Gimenez-Ibanez S, et al.
    JAZ2 controls stomata dynamics during bacterial invasion.
    New Phytol., 2017. 213(3): p. 1378-1392
    [PMID:28005270]
  53. Ueda M, et al.
    The Distinct Roles of Class I and II RPD3-Like Histone Deacetylases in Salinity Stress Response.
    Plant Physiol., 2017. 175(4): p. 1760-1773
    [PMID:29018096]
  54. Kang M, et al.
    The C-Domain of the NAC Transcription Factor ANAC019 Is Necessary for pH-Tuned DNA Binding through a Histidine Switch in the N-Domain.
    Cell Rep, 2018. 22(5): p. 1141-1150
    [PMID:29386103]
  55. Sukiran NL,Ma JC,Ma H,Su Z
    ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis.
    Plant Mol. Biol., 2019. 99(1-2): p. 161-174
    [PMID:30604322]