PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G45249.1
Common NameABF2, AREB1, AtABF2, ATAREB1, BZIP36, T2P3
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bZIP
Protein Properties Length: 416aa    MW: 44165.3 Da    PI: 9.8392
Description abscisic acid responsive elements-binding factor 2
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G45249.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1bZIP_146.67.2e-15338391558
                  CHHHCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CS
       bZIP_1   5 krerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaLkkeleelkkevak 58 
                  +r+rr++kNRe+A rsR+RK+a++ eLe +v++L++eN++L+ +  ++ ++ ++
  AT1G45249.1 338 RRQRRMIKNRESAARSRARKQAYTVELEAEVAKLKEENDELQRKQARIMEMQKN 391
                  79****************************************999999988765 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003381.4E-13334398IPR004827Basic-leucine zipper domain
PROSITE profilePS5021711.381336399IPR004827Basic-leucine zipper domain
SuperFamilySSF579591.55E-10338387No hitNo description
CDDcd147074.01E-27338392No hitNo description
Gene3DG3DSA:1.20.5.1707.9E-14338387No hitNo description
PfamPF001703.0E-12338391IPR004827Basic-leucine zipper domain
PROSITE patternPS000360341356IPR004827Basic-leucine zipper domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009414Biological Processresponse to water deprivation
GO:0009651Biological Processresponse to salt stress
GO:0009738Biological Processabscisic acid-activated signaling pathway
GO:0010255Biological Processglucose mediated signaling pathway
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0000976Molecular Functiontranscription regulatory region sequence-specific DNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000003anatomywhole plant
PO:0000005anatomycultured plant cell
PO:0000036anatomyleaf vascular system
PO:0000293anatomyguard cell
PO:0005660anatomyhydathode
PO:0009005anatomyroot
Sequence ? help Back to Top
Protein Sequence    Length: 416 aa     Download sequence    Send to blast
MDGSMNLGNE PPGDGGGGGG LTRQGSIYSL TFDEFQSSVG KDFGSMNMDE LLKNIWSAEE  60
TQAMASGVVP VLGGGQEGLQ LQRQGSLTLP RTLSQKTVDQ VWKDLSKVGS SGVGGSNLSQ  120
VAQAQSQSQS QRQQTLGEVT LEEFLVRAGV VREEAQVAAR AQIAENNKGG YFGNDANTGF  180
SVEFQQPSPR VVAAGVMGNL GAETANSLQV QGSSLPLNVN GARTTYQQSQ QQQPIMPKQP  240
GFGYGTQMGQ LNSPGIRGGG LVGLGDQSLT NNVGFVQGAS AAIPGALGVG AVSPVTPLSS  300
EGIGKSNGDS SSLSPSPYMF NGGVRGRKSG TVEKVVERRQ RRMIKNRESA ARSRARKQAY  360
TVELEAEVAK LKEENDELQR KQARIMEMQK NQETEMRNLL QGGPKKKLRR TESGPW
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.481300.0flower| seed
Expression -- Microarray ? help Back to Top
Source ID
Expression AtlasAT1G45249
AtGenExpressAT1G45249
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in roots, leaves, flowers and siliques but not in seeds. {ECO:0000269|PubMed:11005831, ECO:0000269|PubMed:15361142, ECO:0000269|PubMed:16284313}.
Functional Description ? help Back to Top
Source Description
TAIRLeucine zipper transcription factor that binds to the abscisic acid (ABA)responsive element (ABRE) motif in the promoter region of ABA-inducible genes. Enhances drought tolerance in vegetative tissues. Required for normal glucose response. Localized in the nucleus. Expressed constitutively in roots, leaf vascular tissues, and hydathodes or in all tissues under stress conditions. It's phosphorylated by a ABA-activated 42-KDa kinase. Overexpression of the phosphorylated active form of AREB1 expressed many ABA-inducible genes, such as RD29B, without ABA treatment.
UniProtInvolved in ABA and stress responses and acts as a positive component of glucose signal transduction. Functions as transcriptional activator in the ABA-inducible expression of rd29B. Binds specifically to the ABA-responsive element (ABRE) of the rd29B gene promoter. {ECO:0000269|PubMed:11005831, ECO:0000269|PubMed:15361142, ECO:0000269|PubMed:16284313, ECO:0000269|PubMed:16463099}.
Function -- GeneRIF ? help Back to Top
  1. bZIP proteins interacting with the ABA-responsive elements, is involved in Absicic acid/stress responses in arabidopsis.[ABF2]
    [PMID: 15361142]
  2. abscisic acid-dependent multisite phosphorylation of AREB1 regulates its own activation in plants
    [PMID: 16446457]
  3. AREB1, AREB2, and ABF3 are master transcription factors that regulate the ABRE-dependent expression of water-stress responsive genes in ABA signaling in response to water stresses in a cooperative manner.
    [PMID: 19947981]
  4. ABF2 interacts with DREB2C, DREB2A, and DREB1A.
    [PMID: 20395451]
  5. 2 intermediate-frequency haplotype variants at AREB1 were characterized. These variants drive differences in gene regulatory network response to environmental cues and may play an important role in environmental adaptation.
    [PMID: 25540452]
  6. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis
    [PMID: 27373216]
  7. The role of AREB1 in salt stress response: AREB1 expression is regulated by NAP in salt stress response
    [PMID: 27770200]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00186DAP27203113Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT1G45249.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by drought, salt, abscisic acid (ABA), cold and glucose. {ECO:0000269|PubMed:10636868, ECO:0000269|PubMed:11005831, ECO:0000269|PubMed:15361142, ECO:0000269|PubMed:16284313, ECO:0000269|PubMed:16463099}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT3G24650 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G77120(R), AT2G18050(A), AT5G20830(R), AT5G52300(A), AT5G52310(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDabscisic acid
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G45249, AT1G49720
IntActSearch Q9M7Q4
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Defective in glucose response and grows faster. Exhibits abscisic acid (ABA) insensitivity. {ECO:0000269|PubMed:15361142, ECO:0000269|PubMed:16284313}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G45249
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB0171600.0AB017160.1 Arabidopsis thaliana mRNA for ABA-responsive element binding protein 1 (AREB1), complete cds.
GenBankAF0935450.0AF093545.1 Arabidopsis thaliana clone 2 abscisic acid responsive elements-binding factor (ABRE) mRNA, complete cds.
GenBankBT0264430.0BT026443.1 Arabidopsis thaliana At1g45249 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001322811.10.0abscisic acid responsive elements-binding factor 2
RefseqNP_001322815.10.0abscisic acid responsive elements-binding factor 2
RefseqNP_849777.10.0abscisic acid responsive elements-binding factor 2
SwissprotQ9M7Q40.0AI5L5_ARATH; ABSCISIC ACID-INSENSITIVE 5-like protein 5
TrEMBLA0A1P8AV750.0A0A1P8AV75_ARATH; Abscisic acid responsive elements-binding factor 2
STRINGAT1G45249.30.0(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Choi H,Hong J,Ha J,Kang J,Kim SY
    ABFs, a family of ABA-responsive element binding factors.
    J. Biol. Chem., 2000. 275(3): p. 1723-30
    [PMID:10636868]
  2. Uno Y, et al.
    Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(21): p. 11632-7
    [PMID:11005831]
  3. Jakoby M, et al.
    bZIP transcription factors in Arabidopsis.
    Trends Plant Sci., 2002. 7(3): p. 106-11
    [PMID:11906833]
  4. Bensmihen S, et al.
    The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis.
    Plant Cell, 2002. 14(6): p. 1391-403
    [PMID:12084834]
  5. Suzuki M,Ketterling MG,Li QB,McCarty DR
    Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling.
    Plant Physiol., 2003. 132(3): p. 1664-77
    [PMID:12857845]
  6. Kim S,Kang JY,Cho DI,Park JH,Kim SY
    ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.
    Plant J., 2004. 40(1): p. 75-87
    [PMID:15361142]
  7. Kim S, et al.
    ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component.
    Plant Physiol., 2004. 136(3): p. 3639-48
    [PMID:15516505]
  8. Fujita Y, et al.
    AREB1 Is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis.
    Plant Cell, 2005. 17(12): p. 3470-88
    [PMID:16284313]
  9. Choi HI, et al.
    Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity.
    Plant Physiol., 2005. 139(4): p. 1750-61
    [PMID:16299177]
  10. Furihata T, et al.
    Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(6): p. 1988-93
    [PMID:16446457]
  11. Nakashima K, et al.
    Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.
    Plant Mol. Biol., 2006. 60(1): p. 51-68
    [PMID:16463099]
  12. Fujii H,Verslues PE,Zhu JK
    Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis.
    Plant Cell, 2007. 19(2): p. 485-94
    [PMID:17307925]
  13. Tran LS, et al.
    Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(51): p. 20623-8
    [PMID:18077346]
  14. Zhang X,Liu S,Takano T
    Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.
    Plant Mol. Biol., 2008. 68(1-2): p. 131-43
    [PMID:18523728]
  15. Yamamoto A, et al.
    Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors.
    Plant J., 2009. 58(5): p. 843-56
    [PMID:19207209]
  16. Yang YT,Yu YL,Yang GD,Zhang JD,Zheng CC
    Tissue-specific expression of the PNZIP promoter is mediated by combinatorial interaction of different cis-elements and a novel transcriptional factor.
    Nucleic Acids Res., 2009. 37(8): p. 2630-44
    [PMID:19270069]
  17. Lee SJ,Cho DI,Kang JY,Kim SY
    An ARIA-interacting AP2 domain protein is a novel component of ABA signaling.
    Mol. Cells, 2009. 27(4): p. 409-16
    [PMID:19390821]
  18. Fujita Y, et al.
    Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis.
    Plant Cell Physiol., 2009. 50(12): p. 2123-32
    [PMID:19880399]
  19. Fujii H, et al.
    In vitro reconstitution of an abscisic acid signalling pathway.
    Nature, 2009. 462(7273): p. 660-4
    [PMID:19924127]
  20. Yoshida T, et al.
    AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.
    Plant J., 2010. 61(4): p. 672-85
    [PMID:19947981]
  21. Lee SJ, et al.
    DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity.
    Plant Physiol., 2010. 153(2): p. 716-27
    [PMID:20395451]
  22. Kriegs B, et al.
    Cyclic monoterpene mediated modulations of Arabidopsis thaliana phenotype: effects on the cytoskeleton and on the expression of selected genes.
    Plant Signal Behav, 2010. 5(7): p. 832-8
    [PMID:20484979]
  23. Ren X, et al.
    ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis.
    Plant J., 2010. 63(3): p. 417-29
    [PMID:20487379]
  24. Liu Y, et al.
    ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis.
    Plant J., 2010. 63(5): p. 749-65
    [PMID:20561255]
  25. Kline KG,Barrett-Wilt GA,Sussman MR
    In planta changes in protein phosphorylation induced by the plant hormone abscisic acid.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(36): p. 15986-91
    [PMID:20733066]
  26. Gao SQ, et al.
    The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants.
    Plant Mol. Biol., 2011. 75(6): p. 537-53
    [PMID:21331631]
  27. Rushton DL, et al.
    WRKY transcription factors: key components in abscisic acid signalling.
    Plant Biotechnol. J., 2012. 10(1): p. 2-11
    [PMID:21696534]
  28. Kim JS, et al.
    An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.
    Plant Cell Physiol., 2011. 52(12): p. 2136-46
    [PMID:22025559]
  29. Soon FF, et al.
    Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.
    Science, 2012. 335(6064): p. 85-8
    [PMID:22116026]
  30. Lynch T,Erickson BJ,Finkelstein RR
    Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response.
    Plant Mol. Biol., 2012. 80(6): p. 647-58
    [PMID:23007729]
  31. Du ZY,Chen MX,Chen QF,Xiao S,Chye ML
    Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development.
    Plant J., 2013. 74(2): p. 294-309
    [PMID:23448237]
  32. Umezawa T, et al.
    Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana.
    Sci Signal, 2013. 6(270): p. rs8
    [PMID:23572148]
  33. Wang P, et al.
    Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(27): p. 11205-10
    [PMID:23776212]
  34. Li XY, et al.
    Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content.
    Int J Mol Sci, 2013. 14(6): p. 12827-42
    [PMID:23783278]
  35. Pizzio GA, et al.
    The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance.
    Plant Physiol., 2013. 163(1): p. 441-55
    [PMID:23864556]
  36. Rodrigues A, et al.
    ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis.
    Plant Cell, 2013. 25(10): p. 3871-84
    [PMID:24179127]
  37. Lim S, et al.
    ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis.
    Plant Cell, 2013. 25(12): p. 4863-78
    [PMID:24326588]
  38. Des Marais DL,Skillern WD,Juenger TE
    Deeply diverged alleles in the Arabidopsis AREB1 transcription factor drive genome-wide differences in transcriptional response to the environment.
    Mol. Biol. Evol., 2015. 32(4): p. 956-69
    [PMID:25540452]
  39. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  40. Gao S, et al.
    ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis.
    Mol Plant, 2016. 9(9): p. 1272-1285
    [PMID:27373216]
  41. Seok HY, et al.
    Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response.
    Planta, 2017. 245(2): p. 329-341
    [PMID:27770200]