PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G24260.2
Common NameAGL9, F3I6.19, SEP3
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family MIKC_MADS
Protein Properties Length: 251aa    MW: 29066 Da    PI: 8.2953
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G24260.2genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1SRF-TF99.81.1e-31959151
                 S---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE- CS
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                 krienk+nrqvtf+kRrng+lKKA+ELSvLCdaeva+iifs++gklye++s
  AT1G24260.2  9 KRIENKINRQVTFAKRRNGLLKKAYELSVLCDAEVALIIFSNRGKLYEFCS 59
                 79***********************************************96 PP

2K-box93.43.9e-31931751698
        K-box  16 slqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkkl 98 
                  s+qqe+ kLk++++ Lqr+qR+llGedL++Ls keL++Le+qL++slk+iR+ +++++l+q+++lq ke++l e+nk+Lr +l
  AT1G24260.2  93 SSQQEYLKLKERYDALQRTQRNLLGEDLGPLSTKELESLERQLDSSLKQIRALRTQFMLDQLNDLQSKERMLTETNKTLRLRL 175
                  68*****************************************************************************9876 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004321.3E-41160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006633.515161IPR002100Transcription factor, MADS-box
SuperFamilySSF554551.44E-33276IPR002100Transcription factor, MADS-box
CDDcd002655.09E-45276No hitNo description
PRINTSPR004049.3E-33323IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003192.4E-261057IPR002100Transcription factor, MADS-box
PRINTSPR004049.3E-332338IPR002100Transcription factor, MADS-box
PRINTSPR004049.3E-333859IPR002100Transcription factor, MADS-box
PROSITE profilePS5129715.191181IPR002487Transcription factor, K-box
PfamPF014861.3E-2594175IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0001708Biological Processcell fate specification
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010093Biological Processspecification of floral organ identity
GO:0048481Biological Processplant ovule development
GO:0048833Biological Processspecification of floral organ number
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0000229anatomyflower meristem
PO:0000293anatomyguard cell
PO:0009005anatomyroot
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 251 aa     Download sequence    Send to blast
MGRGRVELKR IENKINRQVT FAKRRNGLLK KAYELSVLCD AEVALIIFSN RGKLYEFCSS  60
SSMLRTLERY QKCNYGAPEP NVPSREALAV ELSSQQEYLK LKERYDALQR TQRNLLGEDL  120
GPLSTKELES LERQLDSSLK QIRALRTQFM LDQLNDLQSK ERMLTETNKT LRLRLADGYQ  180
MPLQLNPNQE EVDHYGRHHH QQQQHSQAFF QPLECEPILQ IGYQGQQDGM GAGPSVNNYM  240
LGWLPYDTNS I
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ox0_A1e-66751781104Developmental protein SEPALLATA 3
4ox0_B1e-66751781104Developmental protein SEPALLATA 3
4ox0_C1e-66751781104Developmental protein SEPALLATA 3
4ox0_D1e-66751781104Developmental protein SEPALLATA 3
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.240860.0bud| flower| inflorescence| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO1453360880.0
Genevisible264872_at0.0
Expression AtlasAT1G24260-
AtGenExpressAT1G24260-
ATTED-IIAT1G24260-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed early during flower development within petals, stamens, and carpels.
Functional Description ? help Back to Top
Source Description
TAIRMember of the MADs box transcription factor family. SEP3 is redundant with SEP1 and 2. Flowers of SEP1/2/3 triple mutants show a conversion of petals and stamens to sepals.SEP3 forms heterotetrameric complexes with other MADS box family members and binds to the CArG box motif.
UniProtProbable transcription factor active in inflorescence development and floral organogenesis. Functions with SEPALLATA1/AGL2 and SEPALLATA2/AGL4 to ensure proper development of petals, stamens and carpels and to prevent the indeterminate growth of the flower meristem. Interacts with APETALA1, AGAMOUS or APETALA3/PISTILLATA to form complexes, that could be involved in genes regulation during floral meristem development (PubMed:10821278, PubMed:11206550). Binds specifically to the CArG box DNA sequence 5'-CC (A/T)6 GG-3' (PubMed:16080001). {ECO:0000269|PubMed:10821278, ECO:0000269|PubMed:11206550, ECO:0000269|PubMed:16080001}.
Function -- GeneRIF ? help Back to Top
  1. In order to uncover new roles of SEP3 we studied in detail the phenotypes produced by 35S::SEP3 in different wild type and mutant backgrounds. [SEPALLATA3] [SEP3]
    [PMID: 16098111]
  2. These experiments indicate that the ectopic co-expression of SEPALLATA3 and SHATTERPROOF1 and/or SEEDSTICK is probably not sufficient to homeotically transform vegetative tissues into carpels with ovules.
    [PMID: 16515858]
  3. Evidence that in vitro homotetramers of the class E floral homeotic protein SEPALLATA3 from Arabidopsis thaliana bind cooperatively to two sequence elements termed 'CArG boxes' in a phase-dependent manner involving DNA looping.
    [PMID: 19033361]
  4. higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and SEP3 'glue' protein plays a pivotal role in mediating multimerization
    [PMID: 19243611]
  5. SEPALLATA3 integrates and modulates different growth-related and hormonal pathways in a combinatorial fashion with other MADS-box proteins and possibly with non-MADS transcription factors.
    [PMID: 19385720]
  6. The SWI2/SNF2 ATPases physically interact with two direct transcriptional activators of class B and class C gene expression, LEAFY (LFY) and SEPALLATA3 (SEP3).
    [PMID: 22323601]
  7. Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF
    [PMID: 22363474]
  8. Approximately 90% of the binding sites of two well-characterized MADS domain transcription factors, APETALA1 and SEPALLATA3, were covered by the DNase I hypersensitive (DH) sites.
    [PMID: 22773751]
  9. Here, we show that SEP3 as a downstream gene of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and FT modulates the flowering time in response to different ambient temperatures.
    [PMID: 22899051]
  10. Data indicate that SEEDSTICK (STK) and SEPALLATA3 (SEP3) dimers can induce loop formation in the VERDANDI (VDD) promoter by binding to two nearby CC(A/T)6GG (CArG) boxes essential for promoter activity.
    [PMID: 23847151]
  11. SEP3 is a member of the MADS transcription factor family and plays a role in the development of the floral organs through the formation of multiprotein complexes with other MADS-family transcription factors.
    [PMID: 23989147]
  12. The 2.5-A crystal structure of a small portion of the intervening and the complete keratin-like domain of SEP3, is reported.
    [PMID: 25228343]
  13. Authors analyzed the oligomeric status of SEP3 domains in the absence of the DNA-binding MADS-box domain
    [PMID: 26505403]
  14. Cloning, prokaryotic expression and purification of CpfS1 (Sep3) protein from Arabidopsis thaliana has ben described.
    [PMID: 26718440]
  15. recognizes target DNA sequences by shape readout involving a conserved arginine residue in the MADS-domain
    [PMID: 29744943]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00605ChIP-seqSRX004990Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT1G24260.2
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G22540 (R), AT2G45660 (R), AT4G09960 (A), AT4G18960 (A), AT4G24470 (A), AT4G24540 (R), AT4G27330 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G69120(R), AT2G17950(R), AT2G22540(R), AT3G54340(A), AT4G18960(A), AT4G24540(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDauxin
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G69120AP1 interacts with SEP3.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G24260, AT1G26310, AT1G69120
IntActSearch O22456
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Triple mutations in the SEP1, SEP2 and SEP3 genes result in the replacement of the stamens and petals by sepals and of the carpels by a new mutant flower with sepaloid organs. {ECO:0000269|PubMed:10821278}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G24260
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankBT0331570.0BT033157.1 Arabidopsis thaliana unknown protein (At1g24260) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_564214.20.0K-box region and MADS-box transcription factor family protein
SwissprotO224560.0SEP3_ARATH; Developmental protein SEPALLATA 3
TrEMBLA0A384L6U00.0A0A384L6U0_ARATH; SEP3
TrEMBLB4F7R90.0B4F7R9_ARATH; At1g24260
STRINGAT1G24260.20.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM62202644
Representative plantOGRP1617761
Publications ? help Back to Top
  1. Shinozuka Y, et al.
    Isolation and characterization of rice MADS box gene homologues and their RFLP mapping.
    DNA Res., 1999. 6(2): p. 123-9
    [PMID:10382970]
  2. Pelaz S,Ditta GS,Baumann E,Wisman E,Yanofsky MF
    B and C floral organ identity functions require SEPALLATA MADS-box genes.
    Nature, 2000. 405(6783): p. 200-3
    [PMID:10821278]
  3. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  4. Honma T,Goto K
    Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.
    Nature, 2001. 409(6819): p. 525-9
    [PMID:11206550]
  5. Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MF
    APETALA1 and SEPALLATA3 interact to promote flower development.
    Plant J., 2001. 26(4): p. 385-94
    [PMID:11439126]
  6. Prasad K,Sriram P,Kumar CS,Kushalappa K,Vijayraghavan U
    Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.
    Dev. Genes Evol., 2001. 211(6): p. 281-90
    [PMID:11466523]
  7. Li J,Jia D,Chen X
    HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein.
    Plant Cell, 2001. 13(10): p. 2269-81
    [PMID:11595801]
  8. Seki M, et al.
    Functional annotation of a full-length Arabidopsis cDNA collection.
    Science, 2002. 296(5565): p. 141-5
    [PMID:11910074]
  9. Kapoor M, et al.
    Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function.
    Plant J., 2002. 32(1): p. 115-27
    [PMID:12366805]
  10. Ferrario S,Immink RG,Shchennikova A,Busscher-Lange J,Angenent GC
    The MADS box gene FBP2 is required for SEPALLATA function in petunia.
    Plant Cell, 2003. 15(4): p. 914-25
    [PMID:12671087]
  11. Kotake T,Takada S,Nakahigashi K,Ohto M,Goto K
    Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes.
    Plant Cell Physiol., 2003. 44(6): p. 555-64
    [PMID:12826620]
  12. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
    [PMID:12837945]
  13. Hsu HF,Huang CH,Chou LT,Yang CH
    Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana.
    Plant Cell Physiol., 2003. 44(8): p. 783-94
    [PMID:12941870]
  14. Yang Y,Xiang H,Jack T
    pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development.
    Plant J., 2003. 33(1): p. 177-88
    [PMID:12943551]
  15. Tzeng TY,Hsiao CC,Chi PJ,Yang CH
    Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Plant Physiol., 2003. 133(3): p. 1091-101
    [PMID:14526112]
  16. Favaro R, et al.
    MADS-box protein complexes control carpel and ovule development in Arabidopsis.
    Plant Cell, 2003. 15(11): p. 2603-11
    [PMID:14555696]
  17. Bae MS,Cho EJ,Choi EY,Park OK
    Analysis of the Arabidopsis nuclear proteome and its response to cold stress.
    Plant J., 2003. 36(5): p. 652-63
    [PMID:14617066]
  18. Shikata M, et al.
    Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family.
    J. Exp. Bot., 2004. 55(397): p. 631-9
    [PMID:14966217]
  19. Shchennikova AV,Shulga OA,Immink R,Skryabin KG,Angenent GC
    Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies.
    Plant Physiol., 2004. 134(4): p. 1632-41
    [PMID:15064378]
  20. M
    Changes in gene expression in response to altered SHL transcript levels.
    Plant Mol. Biol., 2003. 53(6): p. 805-20
    [PMID:15082927]
  21. Lemmetyinen J, et al.
    Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch.
    Physiol Plant, 2004. 121(1): p. 149-162
    [PMID:15086829]
  22. Fornara F, et al.
    Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes.
    Plant Physiol., 2004. 135(4): p. 2207-19
    [PMID:15299121]
  23. Ditta G,Pinyopich A,Robles P,Pelaz S,Yanofsky MF
    The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity.
    Curr. Biol., 2004. 14(21): p. 1935-40
    [PMID:15530395]
  24. Yang Y,Jack T
    Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins.
    Plant Mol. Biol., 2004. 55(1): p. 45-59
    [PMID:15604664]
  25. Gómez-Mena C,de Folter S,Costa MM,Angenent GC,Sablowski R
    Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.
    Development, 2005. 132(3): p. 429-38
    [PMID:15634696]
  26. de Folter S, et al.
    Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    Plant Cell, 2005. 17(5): p. 1424-33
    [PMID:15805477]
  27. Cseke LJ, et al.
    SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees.
    Gene, 2005. 358: p. 1-16
    [PMID:16040208]
  28. Kaufmann K,Anfang N,Saedler H,Theissen G
    Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.
    Mol. Genet. Genomics, 2005. 274(2): p. 103-18
    [PMID:16080001]
  29. Castillejo C,Romera-Branchat M,Pelaz S
    A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Plant J., 2005. 43(4): p. 586-96
    [PMID:16098111]
  30. Malcomber ST,Kellogg EA
    SEPALLATA gene diversification: brave new whorls.
    Trends Plant Sci., 2005. 10(9): p. 427-35
    [PMID:16099195]
  31. Nakahigashi K,Jasencakova Z,Schubert I,Goto K
    The Arabidopsis heterochromatin protein1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin.
    Plant Cell Physiol., 2005. 46(11): p. 1747-56
    [PMID:16131496]
  32. Teper-Bamnolker P,Samach A
    The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves.
    Plant Cell, 2005. 17(10): p. 2661-75
    [PMID:16155177]
  33. Battaglia R,Brambilla V,Colombo L,Stuitje AR,Kater MM
    Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system.
    Mech. Dev., 2006. 123(4): p. 267-76
    [PMID:16515858]
  34. Sundström JF,Nakayama N,Glimelius K,Irish VF
    Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Plant J., 2006. 46(4): p. 593-600
    [PMID:16640596]
  35. Gregis V,Sessa A,Colombo L,Kater MM
    AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.
    Plant Cell, 2006. 18(6): p. 1373-82
    [PMID:16679456]
  36. Guyomarc'h S, et al.
    MGOUN3: evidence for chromatin-mediated regulation of FLC expression.
    J. Exp. Bot., 2006. 57(9): p. 2111-9
    [PMID:16728410]
  37. Sridhar VV,Surendrarao A,Liu Z
    APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
    Development, 2006. 133(16): p. 3159-66
    [PMID:16854969]
  38. de Folter S, et al.
    A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis.
    Plant J., 2006. 47(6): p. 934-46
    [PMID:16925602]
  39. Huang MD,Wu WL
    Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana.
    Plant Mol. Biol., 2007. 63(4): p. 557-69
    [PMID:17195036]
  40. Zhao L,Kim Y,Dinh TT,Chen X
    miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.
    Plant J., 2007. 51(5): p. 840-9
    [PMID:17573799]
  41. Brambilla V, et al.
    Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis.
    Plant Cell, 2007. 19(8): p. 2544-56
    [PMID:17693535]
  42. de Folter S,Urbanus SL,van Zuijlen LG,Kaufmann K,Angenent GC
    Tagging of MADS domain proteins for chromatin immunoprecipitation.
    BMC Plant Biol., 2007. 7: p. 47
    [PMID:17868439]
  43. Hill K,Wang H,Perry SE
    A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components.
    Plant J., 2008. 53(1): p. 172-85
    [PMID:17999645]
  44. Gregis V,Sessa A,Colombo L,Kater MM
    AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
    Plant J., 2008. 56(6): p. 891-902
    [PMID:18694458]
  45. Melzer R,Verelst W,Theissen G
    The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro.
    Nucleic Acids Res., 2009. 37(1): p. 144-57
    [PMID:19033361]
  46. Urbanus SL, et al.
    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana.
    BMC Plant Biol., 2009. 9: p. 5
    [PMID:19138429]
  47. Immink RG, et al.
    SEPALLATA3: the 'glue' for MADS box transcription factor complex formation.
    Genome Biol., 2009. 10(2): p. R24
    [PMID:19243611]
  48. Kaufmann K, et al.
    Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower.
    PLoS Biol., 2009. 7(4): p. e1000090
    [PMID:19385720]
  49. Liu C,Xi W,Shen L,Tan C,Yu H
    Regulation of floral patterning by flowering time genes.
    Dev. Cell, 2009. 16(5): p. 711-22
    [PMID:19460347]
  50. Chang YY,Chiu YF,Wu JW,Yang CH
    Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana.
    Plant Cell Physiol., 2009. 50(8): p. 1425-38
    [PMID:19541596]
  51. Brambilla V,Kater M,Colombo L
    Ovule integument identity determination in Arabidopsis.
    Plant Signal Behav, 2008. 3(4): p. 246-7
    [PMID:19704643]
  52. Liu X, et al.
    The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1401-11
    [PMID:19726570]
  53. Marques MC, et al.
    A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus.
    BMC Genomics, 2009. 10: p. 428
    [PMID:19747386]
  54. Urbanus SL, et al.
    Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Plant J., 2010. 63(1): p. 60-72
    [PMID:20374529]
  55. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
    [PMID:20409275]
  56. Matias-Hernandez L, et al.
    VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis.
    Plant Cell, 2010. 22(6): p. 1702-15
    [PMID:20581305]
  57. Hanada K, et al.
    Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana.
    Mol. Biol. Evol., 2011. 28(1): p. 377-82
    [PMID:20736450]
  58. Urbanus SL,Dinh QD,Angenent GC,Immink RG
    Investigation of MADS domain transcription factor dynamics in the floral meristem.
    Plant Signal Behav, 2010. 5(10): p. 1260-2
    [PMID:20861681]
  59. Deng W, et al.
    FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(16): p. 6680-5
    [PMID:21464308]
  60. Tsaftaris A, et al.
    The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors.
    J. Plant Physiol., 2011. 168(14): p. 1675-84
    [PMID:21621873]
  61. Smaczniak C, et al.
    Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1560-5
    [PMID:22238427]
  62. Severing EI, et al.
    Predicting the impact of alternative splicing on plant MADS domain protein function.
    PLoS ONE, 2012. 7(1): p. e30524
    [PMID:22295091]
  63. Wu MF, et al.
    SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(9): p. 3576-81
    [PMID:22323601]
  64. Lopez-Vernaza M, et al.
    Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF.
    PLoS ONE, 2012. 7(2): p. e30715
    [PMID:22363474]
  65. Teaster ND, et al.
    Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana.
    Front Plant Sci, 2012. 3: p. 32
    [PMID:22645580]
  66. Li G, et al.
    Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis.
    Plant J., 2012. 72(2): p. 261-70
    [PMID:22694359]
  67. Zhang W,Zhang T,Wu Y,Jiang J
    Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis.
    Plant Cell, 2012. 24(7): p. 2719-31
    [PMID:22773751]
  68. Hwan Lee J,Joon Kim J,Ahn JH
    Role of SEPALLATA3 (SEP3) as a downstream gene of miR156-SPL3-FT circuitry in ambient temperature-responsive flowering.
    Plant Signal Behav, 2012. 7(9): p. 1151-4
    [PMID:22899051]
  69. Krogan NT,Hogan K,Long JA
    APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
    Development, 2012. 139(22): p. 4180-90
    [PMID:23034631]
  70. Lee S, et al.
    Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana.
    Plant Sci., 2013. 208: p. 20-7
    [PMID:23683925]
  71. Mendes MA, et al.
    MADS domain transcription factors mediate short-range DNA looping that is essential for target gene expression in Arabidopsis.
    Plant Cell, 2013. 25(7): p. 2560-72
    [PMID:23847151]
  72. Acajjaoui S,Zubieta C
    Crystallization studies of the keratin-like domain from Arabidopsis thaliana SEPALLATA 3.
    Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2013. 69(Pt 9): p. 997-1000
    [PMID:23989147]
  73. Maejima K, et al.
    Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody.
    Plant J., 2014. 78(4): p. 541-54
    [PMID:24597566]
  74. MacLean AM, et al.
    Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner.
    PLoS Biol., 2014. 12(4): p. e1001835
    [PMID:24714165]
  75. Puranik S, et al.
    Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis.
    Plant Cell, 2014. 26(9): p. 3603-15
    [PMID:25228343]
  76. Iglesias FM, et al.
    The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering.
    PLoS Genet., 2015. 11(2): p. e1004975
    [PMID:25693187]
  77. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  78. He Q,Fu AY,Zhang GC,Li TJ,Zhang JH
    Arabidopsis thaliana SEPALLATA3 protein prokaryotic expression and purification.
    Cell. Mol. Biol. (Noisy-le-grand), 2015. 61(2): p. 60-3
    [PMID:26025404]
  79. Maejima K, et al.
    Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen.
    Plant Signal Behav, 2015. 10(8): p. e1042635
    [PMID:26179462]
  80. Muiño JM, et al.
    Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor.
    Mol. Biol. Evol., 2016. 33(1): p. 185-200
    [PMID:26429922]
  81. Shi Q,Zhou J,Wang P,Lin X,Xu Y
    Protein expression and characterization of SEP3 from Arabidopsis thaliana.
    Genet. Mol. Res., 2015. 14(4): p. 12529-36
    [PMID:26505403]
  82. He Q,Fu AY,Zhang GC,Li TJ,Zhang JH
    Cloning, Prokaryotic Expression and Purification of CpfS1 Gene from Arabidopsis Thaliana.
    Cell. Mol. Biol. (Noisy-le-grand), 2015. 61(8): p. 123-7
    [PMID:26718440]
  83. Soza VL,Snelson CD,Hewett Hazelton KD,Di Stilio VS
    Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot.
    Dev. Biol., 2016. 419(1): p. 143-155
    [PMID:27502434]
  84. Conn VM, et al.
    A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation.
    Nat Plants, 2017. 3: p. 17053
    [PMID:28418376]
  85. Käppel S,Melzer R,Rümpler F,Gafert C,Theißen G
    The floral homeotic protein SEPALLATA3 recognizes target DNA sequences by shape readout involving a conserved arginine residue in the MADS-domain.
    Plant J., 2018. 95(2): p. 341-357
    [PMID:29744943]
  86. Purugganan MD,Rounsley SD,Schmidt RJ,Yanofsky MF
    Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
    Genetics, 1995. 140(1): p. 345-56
    [PMID:7635298]
  87. Fan HY,Hu Y,Tudor M,Ma H
    Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins.
    Plant J., 1997. 12(5): p. 999-1010
    [PMID:9418042]