PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G19220.1
Common NameARF11, ARF19, IAA22, T29M8.9
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ARF
Protein Properties Length: 1086aa    MW: 120576 Da    PI: 6.6626
Description auxin response factor 19
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G19220.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1B373.13.3e-23126227199
                  EEEE-..-HHHHTT-EE--HHH.HTT.......---..--SEEEEEETTS-EEEEEE..EEETTEEEE-TTHHHHHHHHT--TT-EEEEEE-SSSEE. CS
           B3   1 ffkvltpsdvlksgrlvlpkkfaeeh.......ggkkeesktltledesgrsWevkliyrkksgryvltkGWkeFvkangLkegDfvvFkldgrsefe 91 
                  f+k+lt sd++++g +++p++ ae++       + +++  ++++ +d++  +W++++iyr++++r++lt+GW+ Fv+ ++L +gD+v+F   ++++ +
  AT1G19220.1 126 FCKTLTASDTSTHGGFSVPRRAAEKIfppldfsM-QPPA-QEIVAKDLHDTTWTFRHIYRGQPKRHLLTTGWSVFVSTKRLFAGDSVLFV--RDEKSQ 219
                  99*****************************954.4444.48************************************************..456777 PP

                  .EEEEE-S CS
           B3  92 lvvkvfrk 99 
                  l+++++r+
  AT1G19220.1 220 LMLGIRRA 227
                  8****997 PP

2Auxin_resp118.55.4e-39252334183
   Auxin_resp   1 aahaastksvFevvYnPrastseFvvkvekvekalkvkvsvGmRfkmafetedsserrlsGtvvgvsdldpvrWpnSkWrsLk 83 
                  aaha +++s+F++++nPras+seFvv+++k++kal+ +vs+GmRf+m+feted+  rr++Gtv+g+sdldpvrW++S+Wr+L+
  AT1G19220.1 252 AAHANANSSPFTIFFNPRASPSEFVVPLAKYNKALYAQVSLGMRFRMMFETEDCGVRRYMGTVTGISDLDPVRWKGSQWRNLQ 334
                  799******************************************************************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019363.4E-44116255IPR015300DNA-binding pseudobarrel domain
Gene3DG3DSA:2.40.330.108.1E-42120241IPR015300DNA-binding pseudobarrel domain
CDDcd100176.78E-21125226No hitNo description
PfamPF023621.6E-21126227IPR003340B3 DNA binding domain
SMARTSM010191.0E-24126228IPR003340B3 DNA binding domain
PROSITE profilePS5086312.534126228IPR003340B3 DNA binding domain
PfamPF065077.6E-34252334IPR010525Auxin response factor
PfamPF023092.7E-99561044IPR033389AUX/IAA domain
PROSITE profilePS5174524.8019581051IPR000270PB1 domain
SuperFamilySSF542771.63E-89721036No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009723Biological Processresponse to ethylene
GO:0009733Biological Processresponse to auxin
GO:0009734Biological Processauxin-activated signaling pathway
GO:0010311Biological Processlateral root formation
GO:0048366Biological Processleaf development
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000016anatomylateral root primordium
PO:0000025anatomyroot tip
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009015anatomyportion of vascular tissue
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 1086 aa     Download sequence    Send to blast
MKAPSNGFLP SSNEGEKKPI NSQLWHACAG PLVSLPPVGS LVVYFPQGHS EQVAASMQKQ  60
TDFIPNYPNL PSKLICLLHS VTLHADTETD EVYAQMTLQP VNKYDREALL ASDMGLKLNR  120
QPTEFFCKTL TASDTSTHGG FSVPRRAAEK IFPPLDFSMQ PPAQEIVAKD LHDTTWTFRH  180
IYRGQPKRHL LTTGWSVFVS TKRLFAGDSV LFVRDEKSQL MLGIRRANRQ TPTLSSSVIS  240
SDSMHIGILA AAAHANANSS PFTIFFNPRA SPSEFVVPLA KYNKALYAQV SLGMRFRMMF  300
ETEDCGVRRY MGTVTGISDL DPVRWKGSQW RNLQVGWDES TAGDRPSRVS IWEIEPVITP  360
FYICPPPFFR PKYPRQPGMP DDELDMENAF KRAMPWMGED FGMKDAQSSM FPGLSLVQWM  420
SMQQNNPLSG SATPQLPSAL SSFNLPNNFA SNDPSKLLNF QSPNLSSANS QFNKPNTVNH  480
ISQQMQAQPA MVKSQQQQQQ QQQQHQHQQQ QLQQQQQLQM SQQQVQQQGI YNNGTIAVAN  540
QVSCQSPNQP TGFSQSQLQQ QSMLPTGAKM THQNINSMGN KGLSQMTSFA QEMQFQQQLE  600
MHNSSQLLRN QQEQSSLHSL QQNLSQNPQQ LQMQQQSSKP SPSQQLQLQL LQKLQQQQQQ  660
QSIPPVSSSL QPQLSALQQT QSHQLQQLLS SQNQQPLAHG NNSFPASTFM QPPQIQVSPQ  720
QQGQMSNKNL VAAGRSHSGH TDGEAPSCST SPSANNTGHD NVSPTNFLSR NQQQGQAASV  780
SASDSVFERA SNPVQELYTK TESRISQGMM NMKSAGEHFR FKSAVTDQID VSTAGTTYCP  840
DVVGPVQQQQ TFPLPSFGFD GDCQSHHPRN NLAFPGNLEA VTSDPLYSQK DFQNLVPNYG  900
NTPRDIETEL SSAAISSQSF GIPSIPFKPG CSNEVGGIND SGIMNGGGLW PNQTQRMRTY  960
TKVQKRGSVG RSIDVTRYSG YDELRHDLAR MFGIEGQLED PLTSDWKLVY TDHENDILLV  1020
GDDPWEEFVN CVQNIKILSS VEVQQMSLDG DLAAIPTTNQ ACSETDSGNA WKVHYEDTSA  1080
AASFNR
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ldu_A1e-1721535545388Auxin response factor 5
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.104880.0flower| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO1864786490.0
Genevisible256010_at0.0
Expression AtlasAT1G19220-
AtGenExpressAT1G19220-
ATTED-IIAT1G19220-
Functional Description ? help Back to Top
Source Description
TAIREncodes an auxin response factor that contains the conserved VP1-B3 DNA-binding domain at its N-terminus and the Aux/IAA-like domains III and IV present in most ARFs at its C-terminus. The protein interacts with IAA1 (yeast two hybrid) and other auxin response elements such as ER7 and ER9 (yeast one hybrid). ARF19 protein can complement many aspects of the arf7 mutant phenotype and , together with ARF7, is involved in the response to ethylene. In the arf7 arf19 double mutant, several auxin-responsive genes (e.g. IAA5, LBD16, LBD29 and LBD33) are no longer upregulated by auxin.
UniProtAuxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LBD29. Functionally redundant with ARF7. {ECO:0000269|PubMed:12036261, ECO:0000269|PubMed:16461383, ECO:0000269|PubMed:17259263}.
Function -- GeneRIF ? help Back to Top
  1. Mutations in ARF19 have little effect on their own, but in combination with mutations in NPH4/ARF7, encoding the most closely related ARF, they cause several phenotypes. [ARF19]
    [PMID: 15960621]
  2. ARF19 complements ARF7 at the protein level participating in auxin signaling, and also play a critical role in ethylene responses in Arabidopsis roots, indicating that the ARFs serve as a cross talk point between the two hormones.
    [PMID: 16461383]
  3. ARF19 acts to regulate the auxin-mediated transcription of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and/or LBD29/ASL16 in roots.
    [PMID: 17259263]
  4. Modulation of auxin sensitivity by phosphate (Pi) availability was found to depend on the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) and the transcription factor AUXIN RESPONSE FACTOR19 (ARF19).
    [PMID: 19106375]
  5. Reduced upregulation of glycolipid synthase and phospholipase genes in these mutants under Pi-deficient conditions indicates that IAA14 and ARF7/19 affect membrane lipid remodeling at the level of transcription.
    [PMID: 20043234]
  6. Mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype.
    [PMID: 22238449]
  7. phosphorylation of ARF7 and ARF19 by BRASSINOSTEROID-insensitive2 (BIN2) can also potentiate auxin signalling output during lateral root organogenesis.
    [PMID: 24362628]
  8. Transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 mutants showed down-regulated expression of PHOSPHATE STARVATION RESPONSE1 (PHR1) and downstream Pi starvation-induced genes in roots.
    [PMID: 30026290]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT1G19220.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By auxin and ethylene. {ECO:0000269|PubMed:16461383}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT5G20730 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G04240(A), AT2G42430(A), AT3G58190(A), AT4G14550(R), AT4G37650(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDauxin, ethylene
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G35240
IntActSearch Q8RYC8
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G19220
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankATU536720.0U53672.2 Arabidopsis thaliana early auxin-induced IAA22 mRNA, complete cds.
GenBankAY6697940.0AY669794.1 Arabidopsis thaliana clone C105352 ARF19 (At1g19220) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_173356.10.0auxin response factor 19
SwissprotQ8RYC80.0ARFS_ARATH; Auxin response factor 19
TrEMBLA0A178WP070.0A0A178WP07_ARATH; Auxin response factor
STRINGAT1G19220.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM26292665
Representative plantOGRP9033914
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Hagen G,Guilfoyle T
    Auxin-responsive gene expression: genes, promoters and regulatory factors.
    Plant Mol. Biol., 2002 Jun-Jul. 49(3-4): p. 373-85
    [PMID:12036261]
  3. M
    Brassinosteroid-regulated gene expression.
    Plant Physiol., 2002. 129(3): p. 1241-51
    [PMID:12114578]
  4. Okushima Y, et al.
    Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19.
    Plant Cell, 2005. 17(2): p. 444-63
    [PMID:15659631]
  5. Weijers D, et al.
    Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators.
    EMBO J., 2005. 24(10): p. 1874-85
    [PMID:15889151]
  6. Wang S,Tiwari SB,Hagen G,Guilfoyle TJ
    AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts.
    Plant Cell, 2005. 17(7): p. 1979-93
    [PMID:15923351]
  7. Wilmoth JC, et al.
    NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation.
    Plant J., 2005. 43(1): p. 118-30
    [PMID:15960621]
  8. Ellis CM, et al.
    AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana.
    Development, 2005. 132(20): p. 4563-74
    [PMID:16176952]
  9. Fukaki H,Nakao Y,Okushima Y,Theologis A,Tasaka M
    Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.
    Plant J., 2005. 44(3): p. 382-95
    [PMID:16236149]
  10. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  11. Li J,Dai X,Zhao Y
    A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis.
    Plant Physiol., 2006. 140(3): p. 899-908
    [PMID:16461383]
  12. Dreher KA,Brown J,Saw RE,Callis J
    The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness.
    Plant Cell, 2006. 18(3): p. 699-714
    [PMID:16489122]
  13. Fukaki H,Taniguchi N,Tasaka M
    PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation.
    Plant J., 2006. 48(3): p. 380-9
    [PMID:17010112]
  14. Okushima Y,Fukaki H,Onoda M,Theologis A,Tasaka M
    ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis.
    Plant Cell, 2007. 19(1): p. 118-30
    [PMID:17259263]
  15. Ivanchenko MG,Muday GK,Dubrovsky JG
    Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.
    Plant J., 2008. 55(2): p. 335-47
    [PMID:18435826]
  16. Uehara T,Okushima Y,Mimura T,Tasaka M,Fukaki H
    Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana.
    Plant Cell Physiol., 2008. 49(7): p. 1025-38
    [PMID:18505759]
  17. Swaminathan K,Peterson K,Jack T
    The plant B3 superfamily.
    Trends Plant Sci., 2008. 13(12): p. 647-55
    [PMID:18986826]
  18. Pérez-Torres CA, et al.
    Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor.
    Plant Cell, 2008. 20(12): p. 3258-72
    [PMID:19106375]
  19. Lee DJ,Park JW,Lee HW,Kim J
    Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression.
    J. Exp. Bot., 2009. 60(13): p. 3935-57
    [PMID:19654206]
  20. Lee HW,Kim NY,Lee DJ,Kim J
    LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1377-89
    [PMID:19717544]
  21. Narise T, et al.
    Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation.
    Plant Mol. Biol., 2010. 72(4-5): p. 533-44
    [PMID:20043234]
  22. De Smet I, et al.
    Bimodular auxin response controls organogenesis in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(6): p. 2705-10
    [PMID:20133796]
  23. Ikeyama Y,Tasaka M,Fukaki H
    RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana.
    Plant J., 2010. 62(5): p. 865-75
    [PMID:20230485]
  24. Varaud E, et al.
    AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp.
    Plant Cell, 2011. 23(3): p. 973-83
    [PMID:21421811]
  25. Ortiz-Castro R, et al.
    Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(17): p. 7253-8
    [PMID:21482761]
  26. Vernoux T, et al.
    The auxin signalling network translates dynamic input into robust patterning at the shoot apex.
    Mol. Syst. Biol., 2011. 7: p. 508
    [PMID:21734647]
  27. Robles LM,Deslauriers SD,Alvarez AA,Larsen PB
    A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis.
    J. Exp. Bot., 2012. 63(5): p. 2231-41
    [PMID:22238449]
  28. Goh T,Joi S,Mimura T,Fukaki H
    The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins.
    Development, 2012. 139(5): p. 883-93
    [PMID:22278921]
  29. Grunewald W, et al.
    Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1554-9
    [PMID:22307611]
  30. Feng Z,Sun X,Wang G,Liu H,Zhu J
    LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana.
    Ann. Bot., 2012. 110(1): p. 1-10
    [PMID:22334497]
  31. Raya-Gonz
    The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana.
    J. Plant Physiol., 2012. 169(14): p. 1348-58
    [PMID:22658222]
  32. Feng Z,Zhu J,Du X,Cui X
    Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana.
    Planta, 2012. 236(4): p. 1227-37
    [PMID:22699776]
  33. Arase F, et al.
    IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis.
    PLoS ONE, 2012. 7(8): p. e43414
    [PMID:22912871]
  34. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
    [PMID:22995285]
  35. Choi S, et al.
    BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis.
    Plant J., 2013. 73(3): p. 380-91
    [PMID:23020607]
  36. Guo X,Lu W,Ma Y,Qin Q,Hou S
    The BIG gene is required for auxin-mediated organ growth in Arabidopsis.
    Planta, 2013. 237(4): p. 1135-47
    [PMID:23288076]
  37. Kim J,Lee HW
    Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis.
    Plant Signal Behav, 2013. 8(2): p. e22979
    [PMID:23299420]
  38. Wang J,Yan DW,Yuan TT,Gao X,Lu YT
    A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level.
    Plant Mol. Biol., 2013. 82(1-2): p. 71-83
    [PMID:23483289]
  39. Hofhuis H, et al.
    Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors.
    Curr. Biol., 2013. 23(11): p. 956-62
    [PMID:23684976]
  40. Kang NY,Lee HW,Kim J
    The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis.
    Plant Cell Physiol., 2013. 54(8): p. 1326-34
    [PMID:23749813]
  41. Perilli S, et al.
    RETINOBLASTOMA-RELATED protein stimulates cell differentiation in the Arabidopsis root meristem by interacting with cytokinin signaling.
    Plant Cell, 2013. 25(11): p. 4469-78
    [PMID:24285791]
  42. Cho H, et al.
    A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development.
    Nat. Cell Biol., 2014. 16(1): p. 66-76
    [PMID:24362628]
  43. Piya S,Shrestha SK,Binder B,Stewart CN,Hewezi T
    Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis.
    Front Plant Sci, 2014. 5: p. 744
    [PMID:25566309]
  44. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  45. Sun Y, et al.
    Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas.
    Sci Rep, 2017. 7: p. 40844
    [PMID:28102350]
  46. Wójcikowska B,Gaj MD
    Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.
    Plant Cell Rep., 2017. 36(6): p. 843-858
    [PMID:28255787]
  47. Olmo R, et al.
    Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?
    Front Plant Sci, 2017. 8: p. 875
    [PMID:28603536]
  48. Lee K,Seo PJ
    High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis.
    Planta, 2017. 246(4): p. 797-802
    [PMID:28766014]
  49. Ayala-Rodríguez JÁ,Barrera-Ortiz S,Ruiz-Herrera LF,López-Bucio J
    Folic acid orchestrates root development linking cell elongation with auxin response and acts independently of the TARGET OF RAPAMYCIN signaling in Arabidopsis thaliana.
    Plant Sci., 2017. 264: p. 168-178
    [PMID:28969797]
  50. Nakamura M, et al.
    Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells.
    Plant Physiol., 2018. 176(1): p. 378-391
    [PMID:29084900]
  51. Hong L, et al.
    Alternative polyadenylation is involved in auxin-based plant growth and development.
    Plant J., 2018. 93(2): p. 246-258
    [PMID:29155478]
  52. Lee K,Park OS,Seo PJ
    Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation.
    Sci Signal, 2018.
    [PMID:29184030]
  53. Kimura T, et al.
    Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis.
    Plant Cell Physiol., 2018. 59(4): p. 823-835
    [PMID:29401292]
  54. Schoenaers S, et al.
    The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth.
    Curr. Biol., 2018. 28(5): p. 722-732.e6
    [PMID:29478854]
  55. Huang KL, et al.
    The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots.
    Plant Physiol., 2018. 178(1): p. 413-427
    [PMID:30026290]
  56. Kim J,Harter K,Theologis A
    Protein-protein interactions among the Aux/IAA proteins.
    Proc. Natl. Acad. Sci. U.S.A., 1997. 94(22): p. 11786-91
    [PMID:9342315]