PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Zmw_sc07578.1.g00030.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; PACMAD clade; Chloridoideae; Zoysieae; Zoysiinae; Zoysia
Family bHLH
Protein Properties Length: 216aa    MW: 24036.6 Da    PI: 9.7746
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Zmw_sc07578.1.g00030.1genomeZGD-
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH40.35.8e-131667155
                                  CHHHHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHHH CS
                           HLH  1 rrrahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55
                                  ++++h ++Er+RR+++N+ +  Lr+l P +   + k+ + a+i   A+++I++Lq
  Zmw_sc07578.1.g00030.1.am.mk 16 KKMSHIAVERNRRRQMNEHLKVLRSLTPAL---YIKRGDQASIIGGAIDFIRELQ 67
                                  689***************************...9********************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000831.42E-121371No hitNo description
Gene3DG3DSA:4.10.280.101.6E-141369IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474592.49E-171593IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PROSITE profilePS5088815.6051566IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000104.5E-101667IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003535.9E-122172IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009913Biological Processepidermal cell differentiation
GO:0010374Biological Processstomatal complex development
GO:0005634Cellular Componentnucleus
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 216 aa     Download sequence    Send to blast
GSSSGRCLHT GRRRRKKMSH IAVERNRRRQ MNEHLKVLRS LTPALYIKRG DQASIIGGAI  60
DFIRELQQVL ESLEARKKRR RSSSSFSTSP TPSPRSLLTT ASSSSPTKHH QVELAACCNS  120
PVADVEAKIS GSNVLLRTLS RRIPGHAVRM IAVLENLHLD VLHLNISTMD DTIGLECQLS  180
VDDLVYEVQQ TFACCHQAEL LEHQDSLMLH PSAMAI
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By UV, flagellin, and jasmonic acid (JA) treatments. {ECO:0000269|PubMed:12679534}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_025815760.12e-89transcription factor MUTE
SwissprotQ9M8K63e-65MUTE_ARATH; Transcription factor MUTE
TrEMBLA0A2T7DSX41e-88A0A2T7DSX4_9POAL; Uncharacterized protein
STRINGSi004438m8e-84(Setaria italica)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MonocotsOGMP111443441
Publications ? help Back to Top
  1. Casson S,Gray JE
    Influence of environmental factors on stomatal development.
    New Phytol., 2008. 178(1): p. 9-23
    [PMID:18266617]
  2. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  3. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
    [PMID:25063454]
  4. de Marcos A, et al.
    Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.
    Front Plant Sci, 2015. 6: p. 456
    [PMID:26157447]
  5. Mahoney AK, et al.
    Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
    Planta, 2016. 243(4): p. 987-98
    [PMID:26748914]
  6. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  7. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
    [PMID:27717464]
  8. Qi X, et al.
    Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Elife, 2018.
    [PMID:28266915]
  9. Raissig MT, et al.
    Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata.
    Science, 2017. 355(6330): p. 1215-1218
    [PMID:28302860]
  10. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  11. Han SK, et al.
    MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata.
    Dev. Cell, 2018. 45(3): p. 303-315.e5
    [PMID:29738710]