PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID TRAES3BF001100060CFD_t1
Common NameTRAES_3BF001100060CFD_c1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; BOP clade; Pooideae; Triticodae; Triticeae; Triticinae; Triticum
Family bHLH
Protein Properties Length: 379aa    MW: 39422.7 Da    PI: 4.8018
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
TRAES3BF001100060CFD_t1genomeIWGSCView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH36.49.7e-12191233754
                              HHHHHHHHHHHHHHHHHHCTSCC.C...TTS-STCHHHHHHHHHHHHHH CS
                      HLH   7 erErrRRdriNsafeeLrellPk.askapskKlsKaeiLekAveYIksL 54 
                              ++ErrRR+++N+++  Lr+++Pk +      K++ a+iL  A++Y+k+L
  TRAES3BF001100060CFD_t1 191 MAERRRRKKLNDRLYMLRSVVPKiS------KMDRASILGDAIDYLKEL 233
                              79*********************66......****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088815.866184233IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474591.96E-16187249IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003533.3E-14190239IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000102.3E-9190233IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.107.7E-16191247IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.68E-13191238No hitNo description
SuperFamilySSF550219.61E-5304369No hitNo description
CDDcd048738.81E-7308379No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 379 aa     Download sequence    Send to blast
MENSAAAVGV EKEDELVGAG GGDWGYLTSE AMATAGFPAF GFPCGARGGV TPAPTSASLL  60
MSMEHAALFD YNAAFPSSSS SAAAAPPAYH DFGSGGNPFS VDAPPFLLEA PPPLTVAPGG  120
QKGGFLAPPL SAFGDGMGWD DEDELDQQSV DASSLGVSAS LENAVVGAPG GGGGGGNGKG  180
KKKGMPAKNL MAERRRRKKL NDRLYMLRSV VPKISKMDRA SILGDAIDYL KELLQRISDL  240
HSELESAPSS AALGGPSTAN SFLPSTPTLQ PFPGRIKEER CPPAPFPSPS GQQATVEVRM  300
REGQAVNIHM FCARRPGILL STMRALDSLG LDIEQAVISC FDGFAMDVFR AEQCREGPGL  360
LPEEIKAVLL HCAGLQNAM
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5gnj_A6e-15186243663Transcription factor MYC2
5gnj_B6e-15186243663Transcription factor MYC2
5gnj_E6e-15186243663Transcription factor MYC2
5gnj_F6e-15186243663Transcription factor MYC2
5gnj_G6e-15186243663Transcription factor MYC2
5gnj_I6e-15186243663Transcription factor MYC2
5gnj_M6e-15186243663Transcription factor MYC2
5gnj_N6e-15186243663Transcription factor MYC2
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1180198KKKGMPAKNLMAERRRRKK
2192199ERRRRKKL
Functional Description ? help Back to Top
Source Description
UniProtMediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA (PubMed:18641265). Functions as a dimer with SPCH during stomatal initiation (PubMed:18641265, PubMed:28507175). {ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:28507175}.
UniProtTranscriptional activator that regulates the cold-induced transcription of CBF/DREB1 genes. Binds specifically to the MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A promoter. Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation (PubMed:18641265, PubMed:28507175). {ECO:0000269|PubMed:17416732, ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:28507175}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By high-salt stress, cold stress and abscisic acid (ABA) treatment.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankEU5621830.0EU562183.1 Triticum aestivum cultivar Norstar ICE41 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_020184163.10.0transcription factor ICE1-like
SwissprotQ9LPW35e-94SCRM2_ARATH; Transcription factor SCREAM2
SwissprotQ9LSE29e-94ICE1_ARATH; Transcription factor ICE1
TrEMBLA0A077RZK70.0A0A077RZK7_WHEAT; Uncharacterized protein
TrEMBLA0A446QBK60.0A0A446QBK6_TRITD; Uncharacterized protein
STRINGTraes_3B_541B06BCF.10.0(Triticum aestivum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MonocotsOGMP164637101
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G12860.14e-90bHLH family protein
Publications ? help Back to Top
  1. Tarasov VA,Khadeeva NV,Mel'nik VA,Ezhova TA,Shestakov SV
    The Atlg12860 gene of Arabidopsis thaliana determines cathelicidin-like antimicrobial activity.
    Dokl. Biol. Sci., 2009.
    [PMID:19760875]
  2. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  3. Brenchley R, et al.
    Analysis of the bread wheat genome using whole-genome shotgun sequencing.
    Nature, 2012. 491(7426): p. 705-10
    [PMID:23192148]
  4. Chen Y, et al.
    Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.
    BMC Biol., 2013. 11: p. 121
    [PMID:24350981]
  5. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  6. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  7. Emmerstorfer A, et al.
    Over-expression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris.
    Biotechnol J, 2015. 10(4): p. 623-35
    [PMID:25641738]
  8. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  9. Lang Z,Zhu J
    OST1 phosphorylates ICE1 to enhance plant cold tolerance.
    Sci China Life Sci, 2015. 58(3): p. 317-8
    [PMID:25680856]
  10. Juan JX, et al.
    Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.
    Genet. Mol. Res., 2015. 14(1): p. 597-608
    [PMID:25729995]
  11. Lee HG,Seo PJ
    The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis.
    Plant J., 2015. 82(6): p. 962-77
    [PMID:25912720]
  12. Horst RJ, et al.
    Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage.
    PLoS Genet., 2015. 11(7): p. e1005374
    [PMID:26203655]
  13. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  14. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  15. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  16. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  17. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  18. Chen L, et al.
    NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.
    Development, 2016. 143(9): p. 1600-11
    [PMID:26989174]
  19. Raissig MT,Abrash E,Bettadapur A,Vogel JP,Bergmann DC
    Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(29): p. 8326-31
    [PMID:27382177]
  20. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
    [PMID:27717464]
  21. Lu X, et al.
    A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 113: p. 78-88
    [PMID:28189052]
  22. Deng C,Ye H,Fan M,Pu T,Yan J
    The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1316442
    [PMID:28414264]
  23. de Marcos A, et al.
    A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    Plant Physiol., 2017. 174(2): p. 823-842
    [PMID:28507175]
  24. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  25. Pal S, et al.
    TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.
    Plant Physiol., 2017. 175(2): p. 916-926
    [PMID:28827455]
  26. Zhao C, et al.
    MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.
    Dev. Cell, 2017. 43(5): p. 618-629.e5
    [PMID:29056551]
  27. Li H, et al.
    MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.
    Dev. Cell, 2017. 43(5): p. 630-642.e4
    [PMID:29056553]
  28. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  29. Liu Y,Zhou J
    MAPping Kinase Regulation of ICE1 in Freezing Tolerance.
    Trends Plant Sci., 2018. 23(2): p. 91-93
    [PMID:29248419]
  30. Xie H, et al.
    Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana.
    Plant Cell Physiol., 2019. 60(1): p. 152-165
    [PMID:30295898]