PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G46760.1
Common NameATR2, BHLH5, EN36, MYC3, MZA15.18
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bHLH
Protein Properties Length: 592aa    MW: 64991.9 Da    PI: 4.9775
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G46760.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH39.41e-12415460454
                  HHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHH CS
          HLH   4 ahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksL 54 
                  +h e+Er+RR+++N++f  Lr ++P+       K++Ka+ L  A+ YI++L
  AT5G46760.1 415 NHVEAERQRREKLNQRFYSLRAVVPNV-----SKMDKASLLGDAISYINEL 460
                  799***********************6.....5***************998 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF142155.3E-5552235IPR025610Transcription factor MYC/MYB N-terminal
PROSITE profilePS5088817.282411460IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474592.88E-18414480IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.05E-14414465No hitNo description
Gene3DG3DSA:4.10.280.106.0E-18415479IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000103.8E-10415460IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003539.8E-17417466IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006952Biological Processdefense response
GO:0009718Biological Processanthocyanin-containing compound biosynthetic process
GO:0009753Biological Processresponse to jasmonic acid
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043425Molecular FunctionbHLH transcription factor binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000003anatomywhole plant
PO:0000005anatomycultured plant cell
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 592 aa     Download sequence    Send to blast
MNGTTSSINF LTSDDDASAA AMEAFIGTNH HSSLFPPPPQ QPPQPQFNED TLQQRLQALI  60
ESAGENWTYA IFWQISHDFD SSTGDNTVIL GWGDGYYKGE EDKEKKKNNT NTAEQEHRKR  120
VIRELNSLIS GGIGVSDESN DEEVTDTEWF FLVSMTQSFV NGVGLPGESF LNSRVIWLSG  180
SGALTGSGCE RAGQGQIYGL KTMVCIATQN GVVELGSSEV ISQSSDLMHK VNNLFNFNNG  240
GGNNGVEASS WGFNLNPDQG ENDPALWISE PTNTGIESPA RVNNGNNSNS NSKSDSHQIS  300
KLEKNDISSV ENQNRQSSCL VEKDLTFQGG LLKSNETLSF CGNESSKKRT SVSKGSNNDE  360
GMLSFSTVVR SAANDSDHSD LEASVVKEAI VVEPPEKKPR KRGRKPANGR EEPLNHVEAE  420
RQRREKLNQR FYSLRAVVPN VSKMDKASLL GDAISYINEL KSKLQQAESD KEEIQKKLDG  480
MSKEGNNGKG CGSRAKERKS SNQDSTASSI EMEIDVKIIG WDVMIRVQCG KKDHPGARFM  540
EALKELDLEV NHASLSVVND LMIQQATVKM GSQFFNHDQL KVALMTKVGE NY
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4rru_A1e-17552421238Transcription factor MYC3
4ywc_A1e-17552421238Transcription factor MYC3
4ywc_B1e-17552421238Transcription factor MYC3
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1396404KKPRKRGRK
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible248864_at0.0
Expression AtlasAT5G46760-
AtGenExpressAT5G46760-
ATTED-IIAT5G46760-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Constitutively expressed in roots, stems, leaves, flowers, and seedlings. {ECO:0000269|PubMed:12136026, ECO:0000269|PubMed:12679534, ECO:0000269|PubMed:21335373}.
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor involved in tryptophan, jasmonic acid (JA) and other stress-responsive gene regulation. With MYC2 and MYC4, controls additively subsets of JA-dependent responses. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the G-box (5'-CACGTG-3') of promoters. Activates multiple TIFY/JAZ promoters. {ECO:0000269|PubMed:12136026, ECO:0000269|PubMed:21242320, ECO:0000269|PubMed:21321051, ECO:0000269|PubMed:21335373, ECO:0000269|PubMed:23943862}.
Function -- GeneRIF ? help Back to Top
  1. results suggest that MYC3 (At5g46760) and MYC4 are JAZ-interacting transcription factors that regulate jasmonate responses
    [PMID: 21321051]
  2. MYC3 and MYC4, act additively with MYC2 in the activation of jasmonic acid responses.
    [PMID: 21335373]
  3. MYC2/MYC3/MYC4 are necessary for direct transcriptional activation of GS biosynthesis genes.
    [PMID: 23943862]
  4. regulator of glucosinolate biosynthesis
    [PMID: 25049362]
  5. JAZ1 and JAZ10 were the only JAZ proteins still showing interaction with the mutant MYC proteins, due to a second MYC interaction domain, besides the classical Jas domain.
    [PMID: 25817565]
  6. MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor
    [PMID: 26258305]
  7. The function of MYC2, MYC3, and MYC4 in seed development and seed storage protein accumulation
    [PMID: 27415132]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00085PBM26531826Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT5G46760.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Barely up-regulated by jasmonic acid. {ECO:0000269|PubMed:21242320, ECO:0000269|PubMed:21335373}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Interaction ? help Back to Top
Source Intact With
BioGRIDAT5G46760, AT5G60890, AT5G61420, AT1G18570, AT1G32640, AT1G74080
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Minor effect on jasmonic acid response and no effect on glucosinolate biosynthesis. Myc2 and myc3 double mutant has an increased insensitivity to jasmonic acid. Myc2, myc3 and myc4 triple mutant has no jasmonate-related defense response, is devoid of glucosinolates and is extremely susceptible to generalist herbivores. {ECO:0000269|PubMed:21321051, ECO:0000269|PubMed:21335373, ECO:0000269|PubMed:23943862}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G46760
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB0168820.0AB016882.1 Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone:MZA15.
GenBankCP0026880.0CP002688.1 Arabidopsis thaliana chromosome 5 sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_199488.10.0Basic helix-loop-helix (bHLH) DNA-binding family protein
SwissprotQ9FIP90.0MYC3_ARATH; Transcription factor MYC3
TrEMBLA0A178UPV40.0A0A178UPV4_ARATH; MYC3
STRINGAT5G46760.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM12652896
Representative plantOGRP37331224
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Smolen GA,Pawlowski L,Wilensky SE,Bender J
    Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress-responsive genes in Arabidopsis.
    Genetics, 2002. 161(3): p. 1235-46
    [PMID:12136026]
  3. Abe H, et al.
    Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling.
    Plant Cell, 2003. 15(1): p. 63-78
    [PMID:12509522]
  4. Heim MA, et al.
    The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.
    Mol. Biol. Evol., 2003. 20(5): p. 735-47
    [PMID:12679534]
  5. Toledo-Ortiz G,Huq E,Quail PH
    The Arabidopsis basic/helix-loop-helix transcription factor family.
    Plant Cell, 2003. 15(8): p. 1749-70
    [PMID:12897250]
  6. Bailey PC, et al.
    Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana.
    Plant Cell, 2003. 15(11): p. 2497-502
    [PMID:14600211]
  7. Lorenzo O,Chico JM,S
    JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis.
    Plant Cell, 2004. 16(7): p. 1938-50
    [PMID:15208388]
  8. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
    [PMID:16553894]
  9. Cao D,Cheng H,Wu W,Soo HM,Peng J
    Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis.
    Plant Physiol., 2006. 142(2): p. 509-25
    [PMID:16920880]
  10. Kanaoka MM, et al.
    SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation.
    Plant Cell, 2008. 20(7): p. 1775-85
    [PMID:18641265]
  11. Gong W, et al.
    The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors.
    Mol Plant, 2008. 1(1): p. 27-41
    [PMID:19802365]
  12. Pauwels L, et al.
    NINJA connects the co-repressor TOPLESS to jasmonate signalling.
    Nature, 2010. 464(7289): p. 788-91
    [PMID:20360743]
  13. Cheng Z, et al.
    The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis.
    Mol Plant, 2011. 4(2): p. 279-88
    [PMID:21242320]
  14. Niu Y,Figueroa P,Browse J
    Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis.
    J. Exp. Bot., 2011. 62(6): p. 2143-54
    [PMID:21321051]
  15. Fern
    The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses.
    Plant Cell, 2011. 23(2): p. 701-15
    [PMID:21335373]
  16. Tominaga-Wada R,Iwata M,Nukumizu Y,Wada T
    Analysis of IIId, IIIe and IVa group basic-helix-loop-helix proteins expressed in Arabidopsis root epidermis.
    Plant Sci., 2011. 181(4): p. 471-8
    [PMID:21889054]
  17. Figueroa P,Browse J
    The Arabidopsis JAZ2 promoter contains a G-Box and thymidine-rich module that are necessary and sufficient for jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins.
    Plant Cell Physiol., 2012. 53(2): p. 330-43
    [PMID:22173100]

  18. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis.
    Plant Physiol., 2012. 160(1): p. 541-55
    [PMID:22822211]
  19. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
    [PMID:22995285]
  20. Kazan K,Manners JM
    MYC2: the master in action.
    Mol Plant, 2013. 6(3): p. 686-703
    [PMID:23142764]
  21. Moreno JE, et al.
    Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10.
    Plant Physiol., 2013. 162(2): p. 1006-17
    [PMID:23632853]
  22. Schweizer F, et al.
    Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior.
    Plant Cell, 2013. 25(8): p. 3117-32
    [PMID:23943862]
  23. Song S, et al.
    Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis.
    Plant Cell, 2014. 26(1): p. 263-79
    [PMID:24399301]
  24. Chico JM, et al.
    Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in Arabidopsis.
    Plant Cell, 2014. 26(5): p. 1967-1980
    [PMID:24824488]
  25. Frerigmann H,Berger B,Gigolashvili T
    bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis.
    Plant Physiol., 2014. 166(1): p. 349-69
    [PMID:25049362]
  26. Goossens J,Swinnen G,Vanden Bossche R,Pauwels L,Goossens A
    Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity.
    New Phytol., 2015. 206(4): p. 1229-37
    [PMID:25817565]
  27. Qi T,Huang H,Song S,Xie D
    Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis.
    Plant Cell, 2015. 27(6): p. 1620-33
    [PMID:26002869]
  28. Gasperini D, et al.
    Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth.
    PLoS Genet., 2015. 11(6): p. e1005300
    [PMID:26070206]
  29. Qi T, et al.
    Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis.
    Plant Cell, 2015. 27(6): p. 1634-49
    [PMID:26071420]
  30. Zhang F, et al.
    Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling.
    Nature, 2015. 525(7568): p. 269-73
    [PMID:26258305]
  31. de Torres Zabala M, et al.
    Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection.
    New Phytol., 2016. 209(3): p. 1120-34
    [PMID:26428397]
  32. Yu J, et al.
    JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis.
    J. Exp. Bot., 2016. 67(3): p. 751-62
    [PMID:26547795]
  33. Chen X,Huang H,Qi T,Liu B,Song S
    New perspective of the bHLH-MYB complex in jasmonate-regulated plant fertility in arabidopsis.
    Plant Signal Behav, 2016. 11(2): p. e1135280
    [PMID:26829586]
  34. Schmiesing A,Emonet A,Gouhier-Darimont C,Reymond P
    Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.
    Plant Physiol., 2016. 170(4): p. 2432-43
    [PMID:26884488]
  35. Thatcher LF, et al.
    Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.
    J. Exp. Bot., 2016. 67(8): p. 2367-86
    [PMID:26896849]
  36. Gao C, et al.
    MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis.
    Plant Physiol. Biochem., 2016. 108: p. 63-70
    [PMID:27415132]
  37. Gimenez-Ibanez S, et al.
    JAZ2 controls stomata dynamics during bacterial invasion.
    New Phytol., 2017. 213(3): p. 1378-1392
    [PMID:28005270]
  38. Zhang F, et al.
    Structural insights into alternative splicing-mediated desensitization of jasmonate signaling.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(7): p. 1720-1725
    [PMID:28137867]
  39. Lian TF,Xu YP,Li LF,Su XD
    Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA.
    Cell Rep, 2017. 19(7): p. 1334-1342
    [PMID:28514654]
  40. Wang H, et al.
    The bHLH Transcription Factors MYC2, MYC3, and MYC4 Are Required for Jasmonate-Mediated Inhibition of Flowering in Arabidopsis.
    Mol Plant, 2017. 10(11): p. 1461-1464
    [PMID:28827172]
  41. Song S, et al.
    MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses.
    Plant Cell Physiol., 2017. 58(10): p. 1752-1763
    [PMID:29017003]
  42. Li B, et al.
    Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involved in Aliphatic Glucosinolate Biosynthesis.
    Plant Cell, 2018. 30(1): p. 178-195
    [PMID:29317470]
  43. Han X, et al.
    Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons.
    Plant Physiol., 2018. 176(4): p. 2871-2885
    [PMID:29496884]