PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G45260.1
Common NameATWRKY52, RCH2, RRS1, RRS1-S, RSH4, SLH1, WRKY52
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family WRKY
Protein Properties Length: 1288aa    MW: 145879 Da    PI: 6.3536
Description Disease resistance protein (TIR-NBS-LRR class)
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G45260.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1WRKY832.9e-2612091268359
                   -SS-EEEEEEE--TT-SS-EEEEEE-ST...T---EEEEEE-SSSTTEEEEEEES--SS- CS
         WRKY    3 DgynWrKYGqKevkgsefprsYYrCtsa...gCpvkkkversaedpkvveitYegeHnhe 59  
                   D ++WrKYGqK++ gs+fpr+YYrC+++   gC+++k+v+rs++d +++ itY +eHnh+
  AT5G45260.1 1209 DLWTWRKYGQKDILGSRFPRGYYRCAYKfthGCKATKQVQRSETDSNMLAITYLSEHNHP 1268
                   99************************99999****************************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF522003.92E-611111IPR000157Toll/interleukin-1 receptor homology (TIR) domain
SuperFamilySSF525402.33E-50153397IPR027417P-loop containing nucleoside triphosphate hydrolase
PfamPF009311.8E-23170407IPR002182NB-ARC
Gene3DG3DSA:3.40.50.3002.3E-10172288IPR027417P-loop containing nucleoside triphosphate hydrolase
PRINTSPR003641.8E-23174189No hitNo description
PRINTSPR003641.8E-23243257No hitNo description
PRINTSPR003641.8E-23337351No hitNo description
SuperFamilySSF467854.08E-11374475IPR011991Winged helix-turn-helix DNA-binding domain
Gene3DG3DSA:3.80.10.101.2E-9506704IPR032675Leucine-rich repeat domain, L domain-like
SuperFamilySSF520581.3E-26512851IPR032675Leucine-rich repeat domain, L domain-like
PfamPF077258.7E-9577596IPR011713Leucine-rich repeat 3
Gene3DG3DSA:3.80.10.102.3E-18705868IPR032675Leucine-rich repeat domain, L domain-like
PRINTSPR003641.8E-23806822No hitNo description
SMARTSM007749.1E-3612071269IPR003657WRKY domain
SuperFamilySSF1182905.89E-2312071270IPR003657WRKY domain
Gene3DG3DSA:2.20.25.806.0E-2512071270IPR003657WRKY domain
PROSITE profilePS5081125.48812091270IPR003657WRKY domain
PfamPF031065.8E-2312091268IPR003657WRKY domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0007165Biological Processsignal transduction
GO:0008219Biological Processcell death
GO:0009816Biological Processdefense response to bacterium, incompatible interaction
GO:0005634Cellular Componentnucleus
GO:0005737Cellular Componentcytoplasm
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0005524Molecular FunctionATP binding
GO:0043531Molecular FunctionADP binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 1288 aa     Download sequence    Send to blast
MTNCEKDEEF VCISCVEEVR YSFVSHLSEA LRRKGINNVV VDVDIDDLLF KESQAKIEKA  60
GVSVMVLPGN CDPSEVWLDK FAKVLECQRN NKDQAVVSVL YGDSLLRDQW LSELDFRGLS  120
RIHQSRKECS DSILVEEIVR DVYETHFYVG RIGIYSKLLE IENMVNKQPI GIRCVGIWGM  180
PGIGKTTLAK AVFDQMSSAF DASCFIEDYD KSIHEKGLYC LLEEQLLPGN DATIMKLSSL  240
RDRLNSKRVL VVLDDVRNAL VGESFLEGFD WLGPGSLIII TSRDKQVFCL CGINQIYEVQ  300
GLNEKEARQL FLLSASIKED MGEQNLQELS VRVINYANGN PLAISVYGRE LKGKKKLSEM  360
ETAFLKLKRR PPFKIVDAFK STYDTLSDNE KNIFLDIACF FQGENVNYVI QLLEGCGFFP  420
HVEIDVLVDK CLVTISENRV WLHKLTQDIG REIINGETVQ IERRRRLWEP WSIKYLLEYN  480
EHKANGEPKT TFKRAQGSEE IEGLFLDTSN LRFDLQPSAF KNMLNLRLLK IYCSNPEVHP  540
VINFPTGSLH SLPNELRLLH WENYPLKSLP QNFDPRHLVE INMPYSQLQK LWGGTKNLEM  600
LRTIRLCHSH HLVDIDDLLK AENLEVIDLQ GCTRLQNFPA AGRLLRLRVV NLSGCIKIKS  660
VLEIPPNIEK LHLQGTGILA LPVSTVKPNH RELVNFLTEI PGLSEELERL TSLLESNSSC  720
QDLGKLICLE LKDCSCLQSL PNMANLDLNV LDLSGCSSLN SIQGFPRFLK QLYLGGTAIR  780
EVPQLPQSLE ILNAHGSCLR SLPNMANLEF LKVLDLSGCS ELETIQGFPR NLKELYFAGT  840
TLREVPQLPL SLEVLNAHGS DSEKLPMHYK FNNFFDLSQQ VVNDFLLKTL TYVKHIPRGY  900
TQELINKAPT FSFSAPSHTN QNATFDLQSG SSVMTRLNHS WRNTLVGFGM LVEVAFPEDY  960
CDATDVGISC VCRWSNKEGR SCRIERKFHC WAPWQVVPKV RKDHTFVFSD VNMRPSTGEG  1020
NDPDIWAGLV VFEFFPINQQ TKCLNDRFTV RRCGVRVINV ATGNTSLENI ALVLSLDPVE  1080
VSGYEVLRVS YDDLQEMDKV LFLYIASLFN DEDVDFVAPL IAGIDLDVSS GLKVLADVSL  1140
ISVSSNGEIV MHSLQRQMGK EILHGQSMLL SDCESSMTEN LSDVPKKKKK HSESRVKKVV  1200
SIPAIDEGDL WTWRKYGQKD ILGSRFPRGY YRCAYKFTHG CKATKQVQRS ETDSNMLAIT  1260
YLSEHNHPRP TKRKALADST RSTSSSIC
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4c6t_A9e-9561534151PROBABLE WRKY TRANSCRIPTION FACTOR 52
4c6t_C9e-9561534151PROBABLE WRKY TRANSCRIPTION FACTOR 52
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
111851197KKKKKHSESRVKK
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.300210.0root
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible248995_at0.0
Expression AtlasAT5G45260-
AtGenExpressAT5G45260-
ATTED-IIAT5G45260-
Functional Description ? help Back to Top
Source Description
TAIRConfers resistance to Ralstonia solanacearum. Similar to NBLS-TIR resistance genes,and also contains similarity to transcription factors. Interacts with pathogen effector protein AvrPop2.
UniProtTranscription factor. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis-acting element. Acts also as a disease resistance protein involved in resistance to fungal and bacterial pathogens, including R.solanacearum, P.syringae pv. tomato and C.higginsianum. Heterodimerization with RPS4 is required to form a functional complex to recognize AvrRps4 and PopP2 (PubMed:24744375). Contributes to temperature-conditioned RPS4 auto-immunity (PubMed:24146667). {ECO:0000269|PubMed:10571887, ECO:0000269|PubMed:11842188, ECO:0000269|PubMed:19519800, ECO:0000269|PubMed:24146667, ECO:0000269|PubMed:24744375, ECO:0000305}.
Function -- GeneRIF ? help Back to Top
  1. RRS1-Ws and RPS4-Ws, function cooperatively as a dual R-gene system against at least three distinct pathogens.
    [PMID: 19519800]
  2. Distinct allelic forms of RPS4 and RRS1 probably cooperate to confer resistance to different pathogens.
    [PMID: 19686535]
  3. A pair of Arabidopsis nucleotide binding and leucine rich repeat-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato.
    [PMID: 23437080]
  4. properly function for pathogen resistance in two other Brassicaceae, Brassica rapa and B. napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum)
    [PMID: 23518587]
  5. findings show RPS4 and RRS1 physically associate; TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex; RPS4 and RRS1 function as a receptor complex in which the 2 components play distinct roles in recognition and signaling
    [PMID: 24744375]
  6. We show that many sushi(slh1) mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain
    [PMID: 25340333]
  7. Here, we report that dual R proteins, RRS1 and RPS4, from A. thaliana ecotype Wassilewskija confer resistance to bacterial wilt in transgenic Brassica crops.
    [PMID: 25763492]
  8. The Arabidopsis RRS1-R nucleotide-binding, leucine-rich repeat (NB-LRR) protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense.
    [PMID: 26000484]
  9. Although quantitative disease resistance (QDR) to Xanthomonas campestris is conferred by At5g22540 encoding for a protein of unknown function, QDR to XccCFBP6943 involves the well-known immune receptor pair RRS1/RPS4.
    [PMID: 26212639]
  10. The RRS1-leucine zipper motif is crucial for the regulation of the RPS4/RRS1 complex.
    [PMID: 26750751]
  11. RRS1 domains responsible for response to bacterial effectors from plant pathogens.
    [PMID: 30254172]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT5G45260.1
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G45260
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK2264560.0AK226456.1 Arabidopsis thaliana mRNA for disease resistance like protein, complete cds, clone: RAFL06-15-E06.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_199339.20.0Disease resistance protein (TIR-NBS-LRR class)
SwissprotP0DKH50.0WRK52_ARATH; Disease resistance protein RRS1
TrEMBLL7Z7P40.0L7Z7P4_ARATH; Resistance to ralstonia solanacearum 1 (Fragment)
STRINGAT5G45260.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM2506814
Representative plantOGRP1823
Publications ? help Back to Top
  1. Gassmann W,Hinsch ME,Staskawicz BJ
    The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes.
    Plant J., 1999. 20(3): p. 265-77
    [PMID:10571887]
  2. Eulgem T,Rushton PJ,Robatzek S,Somssich IE
    The WRKY superfamily of plant transcription factors.
    Trends Plant Sci., 2000. 5(5): p. 199-206
    [PMID:10785665]
  3. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  4. Deslandes L, et al.
    Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(4): p. 2404-9
    [PMID:11842188]
  5. Seki M, et al.
    Functional annotation of a full-length Arabidopsis cDNA collection.
    Science, 2002. 296(5565): p. 141-5
    [PMID:11910074]
  6. Lahaye T
    The Arabidopsis RRS1-R disease resistance gene--uncovering the plant's nucleus as the new battlefield of plant defense?
    Trends Plant Sci., 2002. 7(10): p. 425-7
    [PMID:12399170]
  7. Deslandes L, et al.
    Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(13): p. 8024-9
    [PMID:12788974]
  8. Lahaye T
    Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2.
    Trends Plant Sci., 2004. 9(1): p. 1-4
    [PMID:14729210]
  9. Noutoshi Y, et al.
    A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death.
    Plant J., 2005. 43(6): p. 873-88
    [PMID:16146526]
  10. Hu J, et al.
    Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum.
    PLoS ONE, 2008. 3(7): p. e2589
    [PMID:18596930]
  11. Narusaka M, et al.
    RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens.
    Plant J., 2009. 60(2): p. 218-26
    [PMID:19519800]
  12. Birker D, et al.
    A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions.
    Plant J., 2009. 60(4): p. 602-13
    [PMID:19686535]
  13. Narusaka M,Kubo Y,Shiraishi T,Iwabuchi M,Narusaka Y
    A dual resistance gene system prevents infection by three distinct pathogens.
    Plant Signal Behav, 2009. 4(10): p. 954-5
    [PMID:19826224]
  14. Yang H, et al.
    A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis.
    Plant J., 2010. 63(2): p. 283-96
    [PMID:20444230]
  15. Nemoto K, et al.
    Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system.
    Phytochemistry, 2011. 72(10): p. 1136-44
    [PMID:21477822]
  16. Van der Linden L, et al.
    Gene-for-gene tolerance to bacterial wilt in Arabidopsis.
    Mol. Plant Microbe Interact., 2013. 26(4): p. 398-406
    [PMID:23234403]
  17. Narusaka M, et al.
    Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens.
    PLoS ONE, 2013. 8(2): p. e55954
    [PMID:23437080]
  18. Narusaka M, et al.
    Breaking restricted taxonomic functionality by dual resistance genes.
    Plant Signal Behav, 2013. 8(6): p. e24244
    [PMID:23518587]
  19. Heidrich K, et al.
    Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity.
    Front Plant Sci, 2013. 4: p. 403
    [PMID:24146667]
  20. Williams SJ, et al.
    Structural basis for assembly and function of a heterodimeric plant immune receptor.
    Science, 2014. 344(6181): p. 299-303
    [PMID:24744375]
  21. Sohn KH, et al.
    The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.
    PLoS Genet., 2014. 10(10): p. e1004655
    [PMID:25340333]
  22. Cesari S,Bernoux M,Moncuquet P,Kroj T,Dodds PN
    A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis.
    Front Plant Sci, 2014. 5: p. 606
    [PMID:25506347]
  23. Narusaka M,Hatakeyama K,Shirasu K,Narusaka Y
    Arabidopsis dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic Brassica crops.
    Plant Signal Behav, 2014. 9(7): p. e29130
    [PMID:25763492]
  24. Sarris PF, et al.
    A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.
    Cell, 2015. 161(5): p. 1089-100
    [PMID:26000484]
  25. Debieu M,Huard-Chauveau C,Genissel A,Roux F,Roby D
    Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function.
    Mol. Plant Pathol., 2016. 17(4): p. 510-20
    [PMID:26212639]
  26. Narusaka M, et al.
    Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1.
    Sci Rep, 2016. 6: p. 18702
    [PMID:26750751]
  27. Ma Y, et al.
    Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors.
    Proc. Natl. Acad. Sci. U.S.A., 2018. 115(41): p. 10218-10227
    [PMID:30254172]
  28. Deslandes L, et al.
    Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum.
    Mol. Plant Microbe Interact., 1998. 11(7): p. 659-67
    [PMID:9650298]