PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G36920.2
Common NameAP2, AP22.49, AtAP2, C7A10.440, FL1, FLO2
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family AP2
Protein Properties Length: 432aa    MW: 47833.5 Da    PI: 7.2967
Description AP2 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G36920.2genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP253.75.2e-17130179155
          AP2   1 sgykGVrwdkkrgrWvAeIrdpsengkr.krfslgkfgtaeeAakaaiaarkkleg 55 
                  s+y+GV++++++grW+++I+d      + k+++lg f+ta  Aa+a+++a+ k++g
  AT4G36920.2 130 SQYRGVTFYRRTGRWESHIWD------CgKQVYLGGFDTAHAAARAYDRAAIKFRG 179
                  78*******************......55************************997 PP

2AP243.29.8e-14222272155
          AP2   1 sgykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                  s+y+GV+ +k  grW+A+   +     +k+++lg f+t+ eAa+a+++a+ k +g
  AT4G36920.2 222 SKYRGVTLHK-CGRWEARMGQF--L-GKKYVYLGLFDTEVEAARAYDKAAIKCNG 272
                  89********.7******5553..2.26**********99**********99776 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF541717.85E-16130188IPR016177DNA-binding domain
PfamPF008474.8E-9130179IPR001471AP2/ERF domain
SMARTSM003809.2E-32131193IPR001471AP2/ERF domain
CDDcd000181.38E-11131189No hitNo description
PROSITE profilePS5103217.596131187IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.105.8E-17131187IPR001471AP2/ERF domain
SuperFamilySSF541712.35E-17222282IPR016177DNA-binding domain
CDDcd000188.58E-26222282No hitNo description
PfamPF008472.6E-9222272IPR001471AP2/ERF domain
SMARTSM003801.5E-32223286IPR001471AP2/ERF domain
PROSITE profilePS5103215.672223280IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.101.7E-16223280IPR001471AP2/ERF domain
PRINTSPR003674.7E-6224235IPR001471AP2/ERF domain
PRINTSPR003674.7E-6262282IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010073Biological Processmeristem maintenance
GO:0010093Biological Processspecification of floral organ identity
GO:0019953Biological Processsexual reproduction
GO:0030154Biological Processcell differentiation
GO:0048316Biological Processseed development
GO:0048481Biological Processplant ovule development
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 432 aa     Download sequence    Send to blast
MWDLNDAPHQ TQREEESEEF CYSSPSKRVG SFSNSSSSAV VIEDGSDDDE LNRVRPNNPL  60
VTHQFFPEMD SNGGGVASGF PRAHWFGVKF CQSDLATGSS AGKATNVAAA VVEPAQPLKK  120
SRRGPRSRSS QYRGVTFYRR TGRWESHIWD CGKQVYLGGF DTAHAAARAY DRAAIKFRGV  180
EADINFNIDD YDDDLKQMTN LTKEEFVHVL RRQSTGFPRG SSKYRGVTLH KCGRWEARMG  240
QFLGKKYVYL GLFDTEVEAA RAYDKAAIKC NGKDAVTNFD PSIYDEELNA ESSGNPTTPQ  300
DHNLDLSLGN SANSKHKSQD MRLRMNQQQQ DSLHSNEVLG LGQTGMLNHT PNSNHQFPGS  360
SNIGSGGGFS LFPAAENHRF DGRASTNQVL TNAAASSGFS PHHHNQIFNS TSTPHQNWLQ  420
TNGFQPPLMR PS
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.46380.0flower| inflorescence| seed| silique| vegetative tissue
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible246217_at0.0
Expression AtlasAT4G36920-
AtGenExpressAT4G36920-
ATTED-IIAT4G36920-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: It is detectable at low levels throughout the shoot apex and at enhanced levels in the inflorescence meristem, young floral buds and throughout the early stages of flower development and organogenesis. During floral organ differentiation it becomes spatially restricted to specific organ, tissue and cell types within the flower.
UniprotTISSUE SPECIFICITY: Sepals, petals, stamens, carpels, developing ovules, inflorescence stem, leaf and stem.
Functional Description ? help Back to Top
Source Description
TAIREncodes a floral homeotic gene, a member of the AP2/EREBP (ethylene responsive element binding protein) class of transcription factors and is involved in the specification of floral organ identity, establishment of floral meristem identity, suppression of floral meristem indeterminancy, and development of the ovule and seed coat. AP2 also has a role in controlling seed mass. Dominant negative allele I28, revealed a function in meristem maintenance-mutant meristems are smaller than normal siblings. AP2 appears to act on the WUS-CLV pathway in an AG independent manner.
UniProtProbable transcriptional activator that promotes early floral meristem identity (PubMed:7919989). Is required subsequently for the transition of an inflorescence meristem into a floral meristem (PubMed:1675158). Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes (PubMed:1675158, PubMed:23034631). Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and SEUSS (PubMed:1675158). Directly represses AGAMOUS by recruiting the transcriptional corepressor TOPLESS and the histone deacetylase HDA19 (PubMed:23034631). It is also required during seed development (PubMed:1675158). {ECO:0000269|PubMed:1675158, ECO:0000269|PubMed:23034631, ECO:0000269|PubMed:7919989}.
Function -- GeneRIF ? help Back to Top
  1. Control of seed mass and seed yield by the floral homeotic gene APETALA2.
    [PMID: 15708974]
  2. a role for AP2 in controlling seed mass.
    [PMID: 15708976]
  3. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.
    [PMID: 16387832]
  4. The expression of AP2 under the control of miR172 in N. benthiana is reported.
    [PMID: 16897492]
  5. Mutual regulation of APETALA2 and ethylene-responsive element binding protein in A. thaliana is described and discussed.
    [PMID: 17204538]
  6. miR172, a microRNA, serves as a negative regulator of AP2.
    [PMID: 17573799]
  7. The work demonstrates a novel role for BPMs as potential regulators that affect transcriptional activities of ERF/AP2 proteins.
    [PMID: 19843165]
  8. AP2 influences development of the zygotic embryo and endosperm to repress seed size.
    [PMID: 20033449]
  9. A model in which the decision whether stamens or petals develop is based on the balance between AP2 and AG activities, rather than the two being mutually exclusive.
    [PMID: 20876650]
  10. AP2 acts to prevent replum overgrowth in developing fruit by negatively regulating BP and RPL, two genes that normally act to promote replum formation.
    [PMID: 22031547]
  11. in the delicately balanced regulatory network, NSN1 acts to repress AG and plays an additive role with AP2 in floral organ specification.
    [PMID: 22357616]
  12. APETALA2 recognizes and acts through an AT-rich sequence element to promote sepal and petal identities and restrict expression of AGAMOUS in whorls 1 and 2.
    [PMID: 22513376]
  13. findings show that AP2 represses its target genes by physically recruiting the co-repressor TOPLESS and the histone deacetylase HDA19
    [PMID: 23034631]
  14. retrograde signal transmission model is proposed starting with metabolite export through the triose phosphate/phosphate translocator with subsequent MPK6 activation leading to initiation of AP2/ERF-TF gene expression
    [PMID: 24668746]
  15. ARF3 is a direct target of AP2 and partially mediates AP2's function in floral meristem determinacy.ARF3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy.
    [PMID: 25187180]
  16. One of the targets of miR172, APETALA2 (AP2), antagonizes CLV signalling. The ap2-2 mutation strongly suppresses sqn meristem phenotypes, indicating that the effect of SQN on stem cell dynamics is largely, but not fully, mediated by the miR172/AP2 tandem.
    [PMID: 26269626]
  17. upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis.
    [PMID: 27473526]
  18. AP2 does not repress the transcription of AG in the inner two whorls, but instead counteracts AG activity.
    [PMID: 27604611]
  19. APETALA2 Gene Promoter Is Bidirectional and Functions as a Pollen- and Ovule-Specific Promoter in the Reverse Orientation
    [PMID: 28130768]
  20. AtFLO2 is strongly involved in regulation of translocation and transport of assimilates, and contributes greatly to quality control of the various processes involving substance supply or transfer, such as photoassimilation, leaf enlargement, yield of seeds in a silique and accumulation of seed storage compounds.
    [PMID: 28158741]
  21. Data show that FRUITFULL (FUL), a MADS-box gene involved in flowering and fruit development, has a key role in promoting meristem arrest, directly and negatively regulates APETALA2 expression in the shoot apical meristem.
    [PMID: 29422669]
  22. AP2 is essential for plant growth under boron deficient conditions.
    [PMID: 30710051]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT4G36920.2
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Negatively regulated by the C class floral homeotic protein AGAMOUS in stamens and carpels. MicroRNA 172 (miRNA172) negatively regulates APETALA2 at the translational level and may modulate its expression pattern. Seems not to be influenced by jasmonate and Alternaria brassicicola. {ECO:0000269|PubMed:12805630, ECO:0000269|PubMed:12893888, ECO:0000269|PubMed:14555699}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT3G16770 (A), AT4G18960 (R), AT4G27330 (A), AT4G36920 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G69180(R), AT1G79840(A), AT2G37260(A), AT2G42830(R), AT3G16770(R), AT3G23240(R), AT3G54340(A), AT3G58780(R), AT4G18960(R), AT4G36920(R), AT5G03840(R), AT5G20240(A), AT5G49360(A)
Regulation -- MicroRNA ? help Back to Top
Source Description
miRTarBaseRegulated by ath-miR172d, ath-miR172c, ath-miR173, ath-miR172b
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G36920
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankATU125460.0U12546.1 Arabidopsis thaliana Columbia homeotic APETALA2 protein (APETALA2) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001190938.10.0Integrase-type DNA-binding superfamily protein
RefseqNP_195410.10.0Integrase-type DNA-binding superfamily protein
SwissprotP479270.0AP2_ARATH; Floral homeotic protein APETALA 2
TrEMBLA0A178UZG80.0A0A178UZG8_ARATH; FLO2
STRINGAT4G36920.20.0(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Byzova MV, et al.
    Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development.
    Genes Dev., 1999. 13(8): p. 1002-14
    [PMID:10215627]
  2. Aukerman MJ,Lee I,Weigel D,Amasino RM
    The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression.
    Plant J., 1999. 18(2): p. 195-203
    [PMID:10363371]
  3. Western TL,Haughn GW
    BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana.
    Plant J., 1999. 18(3): p. 329-36
    [PMID:10377998]
  4. Maes T,Van Montagu M,Gerats T
    The inflorescence architecture of Petunia hybrida is modified by the Arabidopsis thaliana Ap2 gene.
    Dev. Genet., 1999. 25(3): p. 199-208
    [PMID:10528261]
  5. Bomblies K,Dagenais N,Weigel D
    Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2.
    Dev. Biol., 1999. 216(1): p. 260-4
    [PMID:10588876]
  6. Ezhova TA
    [Arabidopsis thaliana (L.) Heynh. as a model object for studying genetic control of morphogenesis].
    Genetika, 1999. 35(11): p. 1522-37
    [PMID:10624575]
  7. Krizek BA,Prost V,Macias A
    AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.
    Plant Cell, 2000. 12(8): p. 1357-66
    [PMID:10948255]
  8. Ito T,Meyerowitz EM
    Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in arabidopsis.
    Plant Cell, 2000. 12(9): p. 1541-50
    [PMID:11006330]
  9. Deyholos MK,Sieburth LE
    Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron.
    Plant Cell, 2000. 12(10): p. 1799-810
    [PMID:11041877]
  10. Liu Z,Franks RG,Klink VP
    Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA.
    Plant Cell, 2000. 12(10): p. 1879-92
    [PMID:11041883]
  11. Conner J,Liu Z
    LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(23): p. 12902-7
    [PMID:11058164]
  12. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  13. Maes T, et al.
    Petunia Ap2-like genes and their role in flower and seed development.
    Plant Cell, 2001. 13(2): p. 229-44
    [PMID:11226182]
  14. Heisler MG,Atkinson A,Bylstra YH,Walsh R,Smyth DR
    SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein.
    Development, 2001. 128(7): p. 1089-98
    [PMID:11245574]
  15. Pautot V, et al.
    KNAT2: evidence for a link between knotted-like genes and carpel development.
    Plant Cell, 2001. 13(8): p. 1719-34
    [PMID:11487688]
  16. Western TL, et al.
    Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis.
    Plant Physiol., 2001. 127(3): p. 998-1011
    [PMID:11706181]
  17. Chen X,Liu J,Cheng Y,Jia D
    HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower.
    Development, 2002. 129(5): p. 1085-94
    [PMID:11874905]
  18. Goff SA, et al.
    A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).
    Science, 2002. 296(5565): p. 92-100
    [PMID:11935018]
  19. Leon-Kloosterziel KM,Keijzer CJ,Koornneef M
    A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development.
    Plant Cell, 1994. 6(3): p. 385-392
    [PMID:12244241]
  20. Shannon S,Meeks-Wagner DR
    Genetic Interactions That Regulate Inflorescence Development in Arabidopsis.
    Plant Cell, 1993. 5(6): p. 639-655
    [PMID:12271079]
  21. Huala E,Sussex IM
    LEAFY Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development.
    Plant Cell, 1992. 4(8): p. 901-913
    [PMID:12297664]
  22. Schultz EA,Haughn GW
    LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis.
    Plant Cell, 1991. 3(8): p. 771-781
    [PMID:12324613]
  23. Shannon S,Meeks-Wagner DR
    A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development.
    Plant Cell, 1991. 3(9): p. 877-892
    [PMID:12324621]
  24. Kunst L,Klenz JE,Martinez-Zapater J,Haughn GW
    AP2 Gene Determines the Identity of Perianth Organs in Flowers of Arabidopsis thaliana.
    Plant Cell, 1989. 1(12): p. 1195-1208
    [PMID:12359889]
  25. Alvarez-Venegas R, et al.
    ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes.
    Curr. Biol., 2003. 13(8): p. 627-37
    [PMID:12699618]
  26. Hennig L,Taranto P,Walser M,Sch
    Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development.
    Development, 2003. 130(12): p. 2555-65
    [PMID:12736201]
  27. Brown RL,Kazan K,McGrath KC,Maclean DJ,Manners JM
    A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis.
    Plant Physiol., 2003. 132(2): p. 1020-32
    [PMID:12805630]
  28. Durfee T, et al.
    The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(14): p. 8571-6
    [PMID:12826617]
  29. Chen X
    A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development.
    Science, 2004. 303(5666): p. 2022-5
    [PMID:12893888]
  30. Bowman JL, et al.
    SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.
    Development, 1992. 114(3): p. 599-615
    [PMID:1352237]
  31. Mizukami Y,Ma H
    Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity.
    Cell, 1992. 71(1): p. 119-31
    [PMID:1356630]
  32. Aukerman MJ,Sakai H
    Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes.
    Plant Cell, 2003. 15(11): p. 2730-41
    [PMID:14555699]
  33. Wakem MP,Kohalmi SE
    Mutation in the ap2-6 allele causes recognition of a cryptic splice site.
    J. Exp. Bot., 2003. 54(393): p. 2655-60
    [PMID:14563835]
  34. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  35. Western TL, et al.
    MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat.
    Plant Physiol., 2004. 134(1): p. 296-306
    [PMID:14701918]
  36. Ohno CK,Reddy GV,Heisler MG,Meyerowitz EM
    The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development.
    Development, 2004. 131(5): p. 1111-22
    [PMID:14973281]
  37. Shigyo M,Ito M
    Analysis of gymnosperm two-AP2-domain-containing genes.
    Dev. Genes Evol., 2004. 214(3): p. 105-14
    [PMID:14986134]
  38. Wellmer F,Riechmann JL,Alves-Ferreira M,Meyerowitz EM
    Genome-wide analysis of spatial gene expression in Arabidopsis flowers.
    Plant Cell, 2004. 16(5): p. 1314-26
    [PMID:15100403]
  39. Gutterson N,Reuber TL
    Regulation of disease resistance pathways by AP2/ERF transcription factors.
    Curr. Opin. Plant Biol., 2004. 7(4): p. 465-71
    [PMID:15231271]
  40. Liu X,Ma L,Zhang JF,Lu YT
    Determination of single-cell gene expression in Arabidopsis by capillary electrophoresis with laser induced fluorescence detection.
    J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004. 808(2): p. 241-7
    [PMID:15261817]
  41. Aharoni A, et al.
    The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.
    Plant Cell, 2004. 16(9): p. 2463-80
    [PMID:15319479]
  42. Espinosa-Soto C,Padilla-Longoria P,Alvarez-Buylla ER
    A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles.
    Plant Cell, 2004. 16(11): p. 2923-39
    [PMID:15486106]
  43. Chub VV,Penin AA
    [Structure of flower in Arabidopsis thaliana: spatial pattern formation].
    Ontogenez, 2004 Jul-Aug. 35(4): p. 280-4
    [PMID:15487346]
  44. Lee JY, et al.
    Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis.
    Plant Cell, 2005. 17(1): p. 25-36
    [PMID:15598802]
  45. Jofuku KD,Omidyar PK,Gee Z,Okamuro JK
    Control of seed mass and seed yield by the floral homeotic gene APETALA2.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(8): p. 3117-22
    [PMID:15708974]
  46. Ohto MA,Fischer RL,Goldberg RB,Nakamura K,Harada JJ
    Control of seed mass by APETALA2.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(8): p. 3123-8
    [PMID:15708976]
  47. Song CP, et al.
    Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses.
    Plant Cell, 2005. 17(8): p. 2384-96
    [PMID:15994908]
  48. Kim S,Soltis PS,Wall K,Soltis DE
    Phylogeny and domain evolution in the APETALA2-like gene family.
    Mol. Biol. Evol., 2006. 23(1): p. 107-20
    [PMID:16151182]
  49. Boerjan W,den Boer B,van Montagu M
    Molecular genetic approaches to plant development.
    Int. J. Dev. Biol., 1992. 36(1): p. 59-66
    [PMID:1627476]
  50. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  51. Feng JX, et al.
    An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family.
    Plant Mol. Biol., 2005. 59(6): p. 853-68
    [PMID:16307362]
  52. Würschum T,Gross-Hardt R,Laux T
    APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem.
    Plant Cell, 2006. 18(2): p. 295-307
    [PMID:16387832]
  53. Shigyo M,Hasebe M,Ito M
    Molecular evolution of the AP2 subfamily.
    Gene, 2006. 366(2): p. 256-65
    [PMID:16388920]
  54. Nakano T,Suzuki K,Fujimura T,Shinshi H
    Genome-wide analysis of the ERF gene family in Arabidopsis and rice.
    Plant Physiol., 2006. 140(2): p. 411-32
    [PMID:16407444]
  55. Cernac A,Andre C,Hoffmann-Benning S,Benning C
    WRI1 is required for seed germination and seedling establishment.
    Plant Physiol., 2006. 141(2): p. 745-57
    [PMID:16632590]
  56. Drews GN,Bowman JL,Meyerowitz EM
    Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.
    Cell, 1991. 65(6): p. 991-1002
    [PMID:1675158]
  57. Rashotte AM, et al.
    A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(29): p. 11081-5
    [PMID:16832061]
  58. Hurtado L,Farrona S,Reyes JC
    The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana.
    Plant Mol. Biol., 2006. 62(1-2): p. 291-304
    [PMID:16845477]
  59. Bowman JL,Smyth DR,Meyerowitz EM
    Genetic interactions among floral homeotic genes of Arabidopsis.
    Development, 1991. 112(1): p. 1-20
    [PMID:1685111]
  60. Mlotshwa S,Yang Z,Kim Y,Chen X
    Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana.
    Plant Mol. Biol., 2006. 61(4-5): p. 781-93
    [PMID:16897492]
  61. Kim DH, et al.
    Molecular cloning of a pepper gene that is homologous to SELF-PRUNING.
    Mol. Cells, 2006. 22(1): p. 89-96
    [PMID:16951555]
  62. Nilsson L,Carlsbecker A,Sund
    APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues.
    Planta, 2007. 225(3): p. 589-602
    [PMID:16953432]
  63. Ogawa T,Uchimiya H,Kawai-Yamada M
    Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2.
    Ann. Bot., 2007. 99(2): p. 239-44
    [PMID:17204538]
  64. Bowman JL,Drews GN,Meyerowitz EM
    Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development.
    Plant Cell, 1991. 3(8): p. 749-58
    [PMID:1726485]
  65. Scofield S,Dewitte W,Murray JA
    The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis.
    Plant J., 2007. 50(5): p. 767-81
    [PMID:17461793]
  66. Zhang J,Cao ML,Huang YB,Wu BJ
    [Study of hrpN(CSDS001) and the gene expression profile of Arabidopsis thaliana induced by Harpin(CSDS001)].
    Yi Chuan, 2007. 29(5): p. 629-36
    [PMID:17548335]
  67. Zhao L,Kim Y,Dinh TT,Chen X
    miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.
    Plant J., 2007. 51(5): p. 840-9
    [PMID:17573799]
  68. Sun S, et al.
    TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis.
    J. Biol. Chem., 2008. 283(10): p. 6261-71
    [PMID:18089556]
  69. Guillaumot D, et al.
    Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix x marschlinsii).
    J. Plant Physiol., 2008. 165(9): p. 1003-10
    [PMID:18160178]
  70. Busov VB,Brunner AM,Strauss SH
    Genes for control of plant stature and form.
    New Phytol., 2008. 177(3): p. 589-607
    [PMID:18211474]
  71. Pauwels L, et al.
    Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(4): p. 1380-5
    [PMID:18216250]
  72. Kumari M,Taylor GJ,Deyholos MK
    Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana.
    Mol. Genet. Genomics, 2008. 279(4): p. 339-57
    [PMID:18270741]
  73. Moore RC,Stevens MH
    Local patterns of nucleotide polymorphism are highly variable in the selfing species Arabidopsis thaliana.
    J. Mol. Evol., 2008. 66(2): p. 116-29
    [PMID:18273534]
  74. Duclos DV,Bj
    Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea.
    J. Exp. Bot., 2008. 59(2): p. 421-33
    [PMID:18332227]
  75. Passarinho P, et al.
    BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways.
    Plant Mol. Biol., 2008. 68(3): p. 225-37
    [PMID:18663586]
  76. Chuck G,Meeley R,Hake S
    Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1.
    Development, 2008. 135(18): p. 3013-9
    [PMID:18701544]
  77. Zhou Y, et al.
    SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development.
    Plant Cell, 2009. 21(1): p. 106-17
    [PMID:19141706]
  78. Arsovski AA,Villota MM,Rowland O,Subramaniam R,Western TL
    MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana.
    J. Exp. Bot., 2009. 60(9): p. 2601-12
    [PMID:19401413]
  79. Arsovski AA, et al.
    AtBXL1 encodes a bifunctional beta-D-xylosidase/alpha-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells.
    Plant Physiol., 2009. 150(3): p. 1219-34
    [PMID:19458117]
  80. Gil-Humanes J,Pist
    Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids.
    BMC Plant Biol., 2009. 9: p. 66
    [PMID:19480686]
  81. Jaspers P, et al.
    Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors.
    Plant J., 2009. 60(2): p. 268-79
    [PMID:19548978]
  82. Glazińska P,Zienkiewicz A,Wojciechowski W,Kopcewicz J
    The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil.
    J. Plant Physiol., 2009. 166(16): p. 1801-13
    [PMID:19560230]
  83. Maeo K, et al.
    An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis.
    Plant J., 2009. 60(3): p. 476-87
    [PMID:19594710]
  84. Liu X, et al.
    The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1401-11
    [PMID:19726570]
  85. Irish VF,Sussex IM
    Function of the apetala-1 gene during Arabidopsis floral development.
    Plant Cell, 1990. 2(8): p. 741-53
    [PMID:1983792]
  86. Weber H,Hellmann H
    Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family.
    FEBS J., 2009. 276(22): p. 6624-35
    [PMID:19843165]
  87. Zhu QH,Upadhyaya NM,Gubler F,Helliwell CA
    Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa).
    BMC Plant Biol., 2009. 9: p. 149
    [PMID:20017947]
  88. Ohto MA,Floyd SK,Fischer RL,Goldberg RB,Harada JJ
    Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis.
    Sex. Plant Reprod., 2009. 22(4): p. 277-89
    [PMID:20033449]
  89. Zhu Q, et al.
    The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses.
    Gene, 2010. 457(1-2): p. 1-12
    [PMID:20193749]
  90. Hinz M, et al.
    Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival.
    Plant Physiol., 2010. 153(2): p. 757-72
    [PMID:20357136]
  91. Yoo SJ, et al.
    BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis.
    Plant J., 2010. 63(2): p. 241-53
    [PMID:20409005]
  92. Rashotte AM,Goertzen LR
    The CRF domain defines cytokinin response factor proteins in plants.
    BMC Plant Biol., 2010. 10: p. 74
    [PMID:20420680]
  93. Tian Z, et al.
    Artificial selection for determinate growth habit in soybean.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(19): p. 8563-8
    [PMID:20421496]
  94. Yant L, et al.
    Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2.
    Plant Cell, 2010. 22(7): p. 2156-70
    [PMID:20675573]
  95. El Ouakfaoui S, et al.
    Control of somatic embryogenesis and embryo development by AP2 transcription factors.
    Plant Mol. Biol., 2010. 74(4-5): p. 313-26
    [PMID:20798978]
  96. Seo YJ, et al.
    Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants.
    Mol. Cells, 2010. 30(3): p. 271-7
    [PMID:20803085]
  97. Wollmann H,Mica E,Todesco M,Long JA,Weigel D
    On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development.
    Development, 2010. 137(21): p. 3633-42
    [PMID:20876650]
  98. Xu H,Wang X,Chen J
    Overexpression of the Rap2.4f transcriptional factor in Arabidopsis promotes leaf senescence.
    Sci China Life Sci, 2010. 53(10): p. 1221-6
    [PMID:20953945]
  99. Krishnaswamy S,Verma S,Rahman MH,Kav NN
    Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis.
    Plant Mol. Biol., 2011. 75(1-2): p. 107-27
    [PMID:21069430]
  100. Lee SJ,Park JH,Lee MH,Yu JH,Kim SY
    Isolation and functional characterization of CE1 binding proteins.
    BMC Plant Biol., 2010. 10: p. 277
    [PMID:21162722]
  101. Zarei A, et al.
    Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis.
    Plant Mol. Biol., 2011. 75(4-5): p. 321-31
    [PMID:21246258]
  102. Zhang W, et al.
    LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in Lithospermum erythrorhizon.
    Plant Biol (Stuttg), 2011. 13(2): p. 343-8
    [PMID:21309981]
  103. Fujita Y,Fujita M,Shinozaki K,Yamaguchi-Shinozaki K
    ABA-mediated transcriptional regulation in response to osmotic stress in plants.
    J. Plant Res., 2011. 124(4): p. 509-25
    [PMID:21416314]
  104. Grigorova B, et al.
    LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers.
    Development, 2011. 138(12): p. 2451-6
    [PMID:21610026]
  105. Kaufmann K,Nagasaki M,J
    Modelling the Molecular Interactions in the Flower Developmental Network of Arabidopsis thaliana.
    Stud Health Technol Inform, 2011. 162: p. 279-97
    [PMID:21685577]
  106. Chandler JW,Werr W
    The role of Dornr
    Plant Signal Behav, 2011. 6(8): p. 1244-6
    [PMID:21758017]
  107. Chen YY,Wang LF,Dai LJ,Yang SG,Tian WM
    Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg.
    Mol. Biol. Rep., 2012. 39(4): p. 3713-9
    [PMID:21761140]
  108. Kerchev PI, et al.
    The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
    Plant Cell, 2011. 23(9): p. 3319-34
    [PMID:21926335]
  109. Ripoll JJ,Roeder AH,Ditta GS,Yanofsky MF
    A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development.
    Development, 2011. 138(23): p. 5167-76
    [PMID:22031547]
  110. Causier B,Ashworth M,Guo W,Davies B
    The TOPLESS interactome: a framework for gene repression in Arabidopsis.
    Plant Physiol., 2012. 158(1): p. 423-38
    [PMID:22065421]
  111. Zander M,Chen S,Imkampe J,Thurow C,Gatz C
    Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif.
    Mol Plant, 2012. 5(4): p. 831-40
    [PMID:22207719]
  112. Varkonyi-Gasic E,Lough RH,Moss SM,Wu R,Hellens RP
    Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172.
    Plant Mol. Biol., 2012. 78(4-5): p. 417-29
    [PMID:22290408]
  113. Tiwari SB, et al.
    The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.
    Plant J., 2012. 70(5): p. 855-65
    [PMID:22321262]
  114. Xiong AS, et al.
    Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis.
    Mol. Biotechnol., 2013. 53(2): p. 198-206
    [PMID:22351429]
  115. Wang X,Gingrich DK,Deng Y,Hong Z
    A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis.
    Mol. Biol. Cell, 2012. 23(8): p. 1446-56
    [PMID:22357616]
  116. Kaufmann K,Nagasaki M,J
    Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana.
    In Silico Biol. (Gedrukt), 2010. 10(1): p. 125-43
    [PMID:22430225]
  117. Yan X, et al.
    Functional identification and characterization of the Brassica napus transcription factor gene BnAP2, the ortholog of Arabidopsis thaliana APETALA2.
    PLoS ONE, 2012. 7(3): p. e33890
    [PMID:22479468]
  118. Dinh TT, et al.
    The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element.
    Development, 2012. 139(11): p. 1978-86
    [PMID:22513376]
  119. McGarry RC,Ayre BG
    Manipulating plant architecture with members of the CETS gene family.
    Plant Sci., 2012. 188-189: p. 71-81
    [PMID:22525246]
  120. Luo H, et al.
    The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height.
    J. Plant Physiol., 2012. 169(10): p. 992-8
    [PMID:22591856]
  121. Rashid M,Guangyuan H,Guangxiao Y,Hussain J,Xu Y
    AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots.
    Evol. Bioinform. Online, 2012. 8: p. 321-55
    [PMID:22807623]
  122. Liu Z, et al.
    Identification and expression of an APETALA2-like gene from Nelumbo nucifera.
    Appl. Biochem. Biotechnol., 2012. 168(2): p. 383-91
    [PMID:22821410]

  123. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis.
    Plant Physiol., 2012. 160(1): p. 541-55
    [PMID:22822211]
  124. Huang HY, et al.
    BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1.
    Mol Plant, 2013. 6(2): p. 456-69
    [PMID:22914576]
  125. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
    [PMID:22995285]
  126. Krogan NT,Hogan K,Long JA
    APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
    Development, 2012. 139(22): p. 4180-90
    [PMID:23034631]
  127. Zhang CH, et al.
    Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica).
    Genet. Mol. Res., 2012. 11(4): p. 4789-809
    [PMID:23096924]
  128. Jin X, et al.
    Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana.
    Mol. Biol. Rep., 2013. 40(2): p. 1743-52
    [PMID:23104474]
  129. Yumul RE, et al.
    POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network.
    PLoS Genet., 2013. 9(1): p. e1003218
    [PMID:23349639]
  130. Lu X, et al.
    AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea.
    New Phytol., 2013. 198(4): p. 1191-202
    [PMID:23448426]
  131. Zheng Q,Zheng Y,Perry SE
    AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response.
    Plant Physiol., 2013. 161(4): p. 2113-27
    [PMID:23457229]
  132. Zwack PJ,Robinson BR,Risley MG,Rashotte AM
    Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses.
    Plant Cell Physiol., 2013. 54(6): p. 971-81
    [PMID:23539244]
  133. Mehrnia M,Balazadeh S,Zanor MI,Mueller-Roeber B
    EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis.
    Plant Physiol., 2013. 162(2): p. 842-57
    [PMID:23616605]
  134. Mase K, et al.
    Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-triggered programmed cell death.
    Mol. Plant Microbe Interact., 2013. 26(8): p. 868-79
    [PMID:23617414]
  135. Kang NY,Lee HW,Kim J
    The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis.
    Plant Cell Physiol., 2013. 54(8): p. 1326-34
    [PMID:23749813]
  136. Ogata T,Kida Y,Tochigi M,Matsushita Y
    Analysis of the cell death-inducing ability of the ethylene response factors in group VIII of the AP2/ERF family.
    Plant Sci., 2013. 209: p. 12-23
    [PMID:23759099]
  137. Jiang WB, et al.
    Brassinosteroid regulates seed size and shape in Arabidopsis.
    Plant Physiol., 2013. 162(4): p. 1965-77
    [PMID:23771896]
  138. Vogel MO, et al.
    Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis.
    Plant Cell, 2014. 26(3): p. 1151-65
    [PMID:24668746]
  139. Thamilarasan SK,Park JI,Jung HJ,Nou IS
    Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea.
    BMC Genomics, 2014. 15: p. 422
    [PMID:24888752]
  140. Liu X, et al.
    AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy.
    Plant J., 2014. 80(4): p. 629-41
    [PMID:25187180]
  141. Zhang GB,Yi HY,Gong JM
    The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation.
    Plant Cell, 2014. 26(10): p. 3984-98
    [PMID:25326291]
  142. Bowman JL,Smyth DR,Meyerowitz EM
    Genes directing flower development in Arabidopsis.
    Plant Cell, 1989. 1(1): p. 37-52
    [PMID:2535466]
  143. Ranocha P,Francoz E,Burlat V,Dunand C
    Expression of PRX36, PMEI6 and SBT1.7 is controlled by complex transcription factor regulatory networks for proper seed coat mucilage extrusion.
    Plant Signal Behav, 2014. 9(11): p. e977734
    [PMID:25531128]
  144. Djemal R,Khoudi H
    Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).
    Protoplasma, 2015. 252(6): p. 1461-73
    [PMID:25687296]
  145. Kazan K
    Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
    Trends Plant Sci., 2015. 20(4): p. 219-29
    [PMID:25731753]
  146. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  147. Prunet N, et al.
    SQUINT promotes stem cell homeostasis and floral meristem termination in Arabidopsis through APETALA2 and CLAVATA signalling.
    J. Exp. Bot., 2015. 66(21): p. 6905-16
    [PMID:26269626]
  148. Xie W, et al.
    Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.
    Front Plant Sci, 2015. 6: p. 829
    [PMID:26528302]
  149. Zumajo-Cardona C,Pabón-Mora N
    Evolution of the APETALA2 Gene Lineage in Seed Plants.
    Mol. Biol. Evol., 2016. 33(7): p. 1818-32
    [PMID:27030733]
  150. Zhao Y, et al.
    An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design.
    Sci Rep, 2016. 6: p. 23890
    [PMID:27033976]
  151. Gao R,Liu P,Irwanto N,Loh R,Wong SM
    Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana.
    Plant Cell Rep., 2016. 35(11): p. 2257-2267
    [PMID:27473526]
  152. Huang Z, et al.
    APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana.
    New Phytol., 2017. 215(3): p. 1197-1209
    [PMID:27604611]
  153. Dory M, et al.
    Kinase-Associated Phosphoisoform Assay: a novel candidate-based method to detect specific kinase-substrate phosphorylation interactions in vivo.
    BMC Plant Biol., 2016. 16(1): p. 204
    [PMID:27655033]
  154. Wang P, et al.
    Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis.
    Front Plant Sci, 2016. 7: p. 1383
    [PMID:27703459]
  155. Sharma P, et al.
    Promoter Trapping and Deletion Analysis Show Arabidopsis thaliana APETALA2 Gene Promoter Is Bidirectional and Functions as a Pollen- and Ovule-Specific Promoter in the Reverse Orientation.
    Appl. Biochem. Biotechnol., 2017. 182(4): p. 1591-1604
    [PMID:28130768]
  156. Kihira M, et al.
    Arabidopsis thaliana FLO2 is Involved in Efficiency of Photoassimilate Translocation, Which is Associated with Leaf Growth and Aging, Yield of Seeds and Seed Quality.
    Plant Cell Physiol., 2017. 58(3): p. 440-450
    [PMID:28158741]
  157. Balanzà V, et al.
    Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway.
    Nat Commun, 2018. 9(1): p. 565
    [PMID:29422669]
  158. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406
    [PMID:29447428]
  159. Song C,Lee J,Kim T,Hong JC,Lim CO
    VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses in Arabidopsis.
    Planta, 2018. 247(6): p. 1439-1448
    [PMID:29536220]
  160. Yoshinari A, et al.
    Polar Localization of the Borate Exporter BOR1 Requires AP2-Dependent Endocytosis.
    Plant Physiol., 2019. 179(4): p. 1569-1580
    [PMID:30710051]
  161. Liu Z,Meyerowitz EM
    LEUNIG regulates AGAMOUS expression in Arabidopsis flowers.
    Development, 1995. 121(4): p. 975-91
    [PMID:7743940]
  162. Yang CH,Chen LJ,Sung ZR
    Genetic regulation of shoot development in Arabidopsis: role of the EMF genes.
    Dev. Biol., 1995. 169(2): p. 421-35
    [PMID:7781888]
  163. Jofuku KD,den Boer BG,Van Montagu M,Okamuro JK
    Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.
    Plant Cell, 1994. 6(9): p. 1211-25
    [PMID:7919989]
  164. Flanagan CA,Ma H
    Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant arabidopsis flowers.
    Plant Mol. Biol., 1994. 26(2): p. 581-95
    [PMID:7948914]
  165. Goto K,Meyerowitz EM
    Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.
    Genes Dev., 1994. 8(13): p. 1548-60
    [PMID:7958839]
  166. Clark SE,Running MP,Meyerowitz EM
    CLAVATA1, a regulator of meristem and flower development in Arabidopsis.
    Development, 1993. 119(2): p. 397-418
    [PMID:8287795]
  167. Venglat SP,Sawhney VK
    Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants.
    Planta, 1996. 198(3): p. 480-7
    [PMID:8717139]
  168. Flanagan CA,Hu Y,Ma H
    Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.
    Plant J., 1996. 10(2): p. 343-53
    [PMID:8771788]
  169. Okamuro JK,Szeto W,Lotys-Prass C,Jofuku KD
    Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1.
    Plant Cell, 1997. 9(1): p. 37-47
    [PMID:9014363]
  170. Sieburth LE,Meyerowitz EM
    Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically.
    Plant Cell, 1997. 9(3): p. 355-65
    [PMID:9090880]
  171. Okamuro JK,Caster B,Villarroel R,Van Montagu M,Jofuku KD
    The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 1997. 94(13): p. 7076-81
    [PMID:9192694]
  172. Chen L,Cheng JC,Castle L,Sung ZR
    EMF genes regulate Arabidopsis inflorescence development.
    Plant Cell, 1997. 9(11): p. 2011-24
    [PMID:9401124]
  173. Riechmann JL,Meyerowitz EM
    The AP2/EREBP family of plant transcription factors.
    Biol. Chem., 1998. 379(6): p. 633-46
    [PMID:9687012]