- Riechmann JL, et al.
Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000. 290(5499): p. 2105-10 [PMID:11118137] - Ma L, et al.
Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell, 2002. 14(10): p. 2383-98 [PMID:12368493] - Heim MA, et al.
The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol., 2003. 20(5): p. 735-47 [PMID:12679534] - Yamashino T, et al.
A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol., 2003. 44(6): p. 619-29 [PMID:12826627] - Toledo-Ortiz G,Huq E,Quail PH
The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003. 15(8): p. 1749-70 [PMID:12897250] - Yamada K, et al.
Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 2003. 302(5646): p. 842-6 [PMID:14593172] - Ito S, et al.
Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol., 2003. 44(11): p. 1237-45 [PMID:14634162] - Fujimori T,Yamashino T,Kato T,Mizuno T
Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol., 2004. 45(8): p. 1078-86 [PMID:15356333] - Khanna R, et al.
A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell, 2004. 16(11): p. 3033-44 [PMID:15486100] - Ito S, et al.
Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana. Plant Cell Physiol., 2007. 48(7): p. 971-83 [PMID:17519251] - Nozue K, et al.
Rhythmic growth explained by coincidence between internal and external cues. Nature, 2007. 448(7151): p. 358-61 [PMID:17589502] - Shen Y,Khanna R,Carle CM,Quail PH
Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol., 2007. 145(3): p. 1043-51 [PMID:17827270] - Lorrain S,Allen T,Duek PD,Whitelam GC,Fankhauser C
Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J., 2008. 53(2): p. 312-23 [PMID:18047474] - Khanna R, et al.
The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell, 2007. 19(12): p. 3915-29 [PMID:18065691] - Kumagai T, et al.
The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 2008. 72(6): p. 1539-49 [PMID:18540109] - Leivar P, et al.
Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr. Biol., 2008. 18(23): p. 1815-23 [PMID:19062289] - Niwa Y,Yamashino T,Mizuno T
The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol., 2009. 50(4): p. 838-54 [PMID:19233867] - Shin J, et al.
Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A., 2009. 106(18): p. 7660-5 [PMID:19380720] - Jaspers P, et al.
Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J., 2009. 60(2): p. 268-79 [PMID:19548978] - Lorrain S,Trevisan M,Pradervand S,Fankhauser C
Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Plant J., 2009. 60(3): p. 449-61 [PMID:19619162] - Rawat R, et al.
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl. Acad. Sci. U.S.A., 2009. 106(39): p. 16883-8 [PMID:19805390] - Hornitschek P,Lorrain S,Zoete V,Michielin O,Fankhauser C
Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J., 2009. 28(24): p. 3893-902 [PMID:19851283] - Leivar P, et al.
Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell, 2009. 21(11): p. 3535-53 [PMID:19920208] - Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation, 2010. 80(1): p. 1-8 [PMID:20219281] - Jang IC,Henriques R,Seo HS,Nagatani A,Chua NH
Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell, 2010. 22(7): p. 2370-83 [PMID:20605855] - Hanada K, et al.
Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Mol. Biol. Evol., 2011. 28(1): p. 377-82 [PMID:20736450] - Richter R,Behringer C,M
The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev., 2010. 24(18): p. 2093-104 [PMID:20844019] - Kunihiro A,Yamashino T,Mizuno T
PHYTOCHROME-INTERACTING FACTORS PIF4 and PIF5 are implicated in the regulation of hypocotyl elongation in response to blue light in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 2010. 74(12): p. 2538-41 [PMID:21150090] - Kim K, et al.
Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A., 2011. 108(4): p. 1729-34 [PMID:21220341] - Nozue K,Harmer SL,Maloof JN
Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol., 2011. 156(1): p. 357-72 [PMID:21430186] - Stewart JL,Maloof JN,Nemhauser JL
PIF genes mediate the effect of sucrose on seedling growth dynamics. PLoS ONE, 2011. 6(5): p. e19894 [PMID:21625438] - Kunihiro A, et al.
Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Plant Cell Physiol., 2011. 52(8): p. 1315-29 [PMID:21666227] - Nusinow DA, et al.
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011. 475(7356): p. 398-402 [PMID:21753751] - Bu Q,Castillon A,Chen F,Zhu L,Huq E
Dimerization and blue light regulation of PIF1 interacting bHLH proteins in Arabidopsis. Plant Mol. Biol., 2011. 77(4-5): p. 501-11 [PMID:21928113] - Franklin KA, et al.
Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. U.S.A., 2011. 108(50): p. 20231-5 [PMID:22123947] - Chow BY,Helfer A,Nusinow DA,Kay SA
ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant Signal Behav, 2012. 7(2): p. 170-3 [PMID:22307044] - Sellaro R,Pac
Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling. Mol Plant, 2012. 5(3): p. 619-28 [PMID:22311777] - Soy J, et al.
Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant J., 2012. 71(3): p. 390-401 [PMID:22409654] - Leivar P,Monte E,Cohn MM,Quail PH
Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop. Mol Plant, 2012. 5(3): p. 734-49 [PMID:22492120] - Hornitschek P, et al.
Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J., 2012. 71(5): p. 699-711 [PMID:22536829] - Casal JJ
Shade avoidance. Arabidopsis Book, 2012. 10: p. e0157 [PMID:22582029] - Shin J,Heidrich K,Sanchez-Villarreal A,Parker JE,Davis SJ
TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell, 2012. 24(6): p. 2470-82 [PMID:22693280] - Reymond MC, et al.
A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. Plant Cell, 2012. 24(7): p. 2812-25 [PMID:22851763] - Trivellini A, et al.
Carbon deprivation-driven transcriptome reprogramming in detached developmentally arresting Arabidopsis inflorescences. Plant Physiol., 2012. 160(3): p. 1357-72 [PMID:22930749] - Lilley JL,Gee CW,Sairanen I,Ljung K,Nemhauser JL
An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. Plant Physiol., 2012. 160(4): p. 2261-70 [PMID:23073695] - Sairanen I, et al.
Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell, 2012. 24(12): p. 4907-16 [PMID:23209113] - Takase M,Mizoguchi T,Kozuka T,Tsukaya H
The unique function of the Arabidopsis circadian clock gene PRR5 in the regulation of shade avoidance response. Plant Signal Behav, 2013. 8(4): p. e23534 [PMID:23333981] - Sun J,Qi L,Li Y,Zhai Q,Li C
PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell, 2013. 25(6): p. 2102-14 [PMID:23757399] - Carabelli M,Turchi L,Ruzza V,Morelli G,Ruberti I
Homeodomain-Leucine Zipper II family of transcription factors to the limelight: central regulators of plant development. Plant Signal Behav, 2014. [PMID:23838958] - Karayekov E,Sellaro R,Legris M,Yanovsky MJ,Casal JJ
Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation. Plant Cell, 2013. 25(8): p. 2892-906 [PMID:23933882] - Yamashino T,Kitayama M,Mizuno T
Transcription of ST2A encoding a sulfotransferase family protein that is involved in jasmonic acid metabolism is controlled according to the circadian clock- and PIF4/PIF5-mediated external coincidence mechanism in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 2013. 77(12): p. 2454-60 [PMID:24317064] - Mannen K, et al.
Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochem. Biophys. Res. Commun., 2014. 443(2): p. 768-74 [PMID:24342623] - Ding Y, et al.
Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol., 2013. 13: p. 229 [PMID:24377444] - Soy J,Leivar P,Monte E
PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5. J. Exp. Bot., 2014. 65(11): p. 2925-36 [PMID:24420574] - Li Y,Jing Y,Li J,Xu G,Lin R
Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiol., 2014. 164(4): p. 2068-80 [PMID:24569844] - Thines BC,Youn Y,Duarte MI,Harmon FG
The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J. Exp. Bot., 2014. 65(4): p. 1141-51 [PMID:24574484] - Sakuraba Y, et al.
Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat Commun, 2014. 5: p. 4636 [PMID:25119965] - Dong J, et al.
Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. Plant Cell, 2014. 26(9): p. 3630-45 [PMID:25248553] - Di C, et al.
Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J., 2014. 80(5): p. 848-61 [PMID:25256571] - Dornbusch T,Michaud O,Xenarios I,Fankhauser C
Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. Plant Cell, 2014. 26(10): p. 3911-21 [PMID:25281688] - Song Y, et al.
Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant, 2014. 7(12): p. 1776-87 [PMID:25296857] - Seaton DD, et al.
Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol. Syst. Biol., 2015. 11(1): p. 776 [PMID:25600997] - Filo J, et al.
Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5. Plant Signal Behav, 2015. 10(3): p. e992707 [PMID:25738547] - Jin J, et al.
An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. Mol. Biol. Evol., 2015. 32(7): p. 1767-73 [PMID:25750178] - Qiu Y, et al.
HEMERA Couples the Proteolysis and Transcriptional Activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis Photomorphogenesis. Plant Cell, 2015. 27(5): p. 1409-27 [PMID:25944101] - Zhang Y,Liu Z,Chen Y,He JX,Bi Y
PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Sci., 2015. 237: p. 57-68 [PMID:26089152] - Mizuno T,Oka H,Yoshimura F,Ishida K,Yamashino T
Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 2015. 79(12): p. 1987-94 [PMID:26193333] - Liu Z, et al.
Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Sci., 2015. 238: p. 64-72 [PMID:26259175] - Galvão VC,Collani S,Horrer D,Schmid M
Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana. Plant J., 2015. 84(5): p. 949-62 [PMID:26466761] - Miyazaki Y, et al.
Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana. Plant Cell Rep., 2016. 35(2): p. 455-67 [PMID:26601822] - Yue J, et al.
TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis. Plant Physiol., 2016. 170(3): p. 1381-97 [PMID:26704640] - Pedmale UV, et al.
Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell, 2016. 164(1-2): p. 233-45 [PMID:26724867] - Pacín M,Semmoloni M,Legris M,Finlayson SA,Casal JJ
Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. New Phytol., 2016. 211(3): p. 967-79 [PMID:27105120] - Fernández V,Takahashi Y,Le Gourrierec J,Coupland G
Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J., 2016. 86(5): p. 426-40 [PMID:27117775] - Martin G,Soy J,Monte E
Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes. Front Plant Sci, 2016. 7: p. 962 [PMID:27458465] - Gray JA,Shalit-Kaneh A,Chu DN,Hsu PY,Harmer SL
The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size. Plant Physiol., 2017. 173(4): p. 2308-2322 [PMID:28254761] - Kasulin L, et al.
A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina. Mol. Ecol., 2017. 26(13): p. 3389-3404 [PMID:28316114] - Wei Z, et al.
Brassinosteroid Biosynthesis Is Modulated via a Transcription Factor Cascade of COG1, PIF4, and PIF5. Plant Physiol., 2017. 174(2): p. 1260-1273 [PMID:28438793] - Shor E,Paik I,Kangisser S,Green R,Huq E
PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis. New Phytol., 2017. 215(1): p. 217-228 [PMID:28440582] - Paik I,Kathare PK,Kim JI,Huq E
Expanding Roles of PIFs in Signal Integration from Multiple Processes. Mol Plant, 2017. 10(8): p. 1035-1046 [PMID:28711729] - Swain S,Jiang HW,Hsieh HL
FAR-RED INSENSITIVE 219/JAR1 Contributes to Shade Avoidance Responses of Arabidopsis Seedlings by Modulating Key Shade Signaling Components. Front Plant Sci, 2017. 8: p. 1901 [PMID:29163619]
|