PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G54220.1
Common NameF24B22.180, SCR, SGR1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family GRAS
Protein Properties Length: 653aa    MW: 71505.6 Da    PI: 6.1714
Description GRAS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G54220.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1GRAS426.62e-1302916502374
         GRAS   2 velLlecAeavssgdlelaqalLarlselaspdgdpmqRlaayfteALaarlarsvselykalppsetseknsseelaalklfsevsPilkfshltaN 99 
                   +lLl+cAeavs+++le+a++lL ++s+l++p+g++ qR+aayf eA++arl++s+ ++y+alp++  ++++s + ++a+++f+ +sP++kfsh+taN
  AT3G54220.1 291 LTLLLQCAEAVSADNLEEANKLLLEISQLSTPYGTSAQRVAAYFSEAMSARLLNSCLGIYAALPSRWMPQTHSLKMVSAFQVFNGISPLVKFSHFTAN 388
                  579*********************************************************************************************** PP

         GRAS 100 qaIleavegeervHiiDfdisqGlQWpaLlqaLasRpegppslRiTgvgspesgskeeleetgerLakfAeelgvpfefnvlvakrledleleeLrvk 197
                  qaI ea+e+e+ vHiiD+di+qGlQWp L++ LasRp+gpp++R+Tg+g     s e+l++tg+rL++fA++lg+pfef + +a+++ +l++e+L+v+
  AT3G54220.1 389 QAIQEAFEKEDSVHIIDLDIMQGLQWPGLFHILASRPGGPPHVRLTGLGT----SMEALQATGKRLSDFADKLGLPFEFCP-LAEKVGNLDTERLNVR 481
                  **************************************************....***************************.59************** PP

         GRAS 198 pgEalaVnlvlqlhrlldesvsleserdevLklvkslsPkvvvvveqeadhnsesFlerflealeyysalfdsleaklpreseerikvErellgreiv 295
                  ++Ea+aV++    h+l+d ++s ++    +L+l+++l Pkvv+vveq+++h ++sFl rf+ea++yysalfdsl a++++eseer++vE++ll++ei+
  AT3G54220.1 482 KREAVAVHWLQ--HSLYDVTGSDAH----TLWLLQRLAPKVVTVVEQDLSH-AGSFLGRFVEAIHYYSALFDSLGASYGEESEERHVVEQQLLSKEIR 572
                  **********9..999988888888....**********************.899******************************************* PP

         GRAS 296 nvvacegaerrerhetlekWrerleeaGFkpvplsekaakqaklllrkvksdgyrveeesgslvlgWkdrpLvsvSaWr 374
                  nv+a  g +r  + + +e+Wre+++++GFk ++l  +aa+qa lll +++sdgy++ +++g+l lgWkd +L+++SaW+
  AT3G54220.1 573 NVLAVGGPSRSGEVK-FESWREKMQQCGFKGISLAGNAATQATLLLGMFPSDGYTLVDDNGTLKLGWKDLSLLTASAWT 650
                  *********888776.**************************************************************6 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5098561.686264630IPR005202Transcription factor GRAS
PfamPF035146.8E-128291650IPR005202Transcription factor GRAS
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0008356Biological Processasymmetric cell division
GO:0009630Biological Processgravitropism
GO:0009956Biological Processradial pattern formation
GO:0048366Biological Processleaf development
GO:0051457Biological Processmaintenance of protein location in nucleus
GO:0090610Biological Processbundle sheath cell fate specification
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0005059anatomyroot endodermis
PO:0008019anatomyleaf lamina base
PO:0009005anatomyroot
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020149anatomyquiescent center
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 653 aa     Download sequence    Send to blast
MAESGDFNGG QPPPHSPLRT TSSGSSSSNN RGPPPPPPPP LVMVRKRLAS EMSSNPDYNN  60
SSRPPRRVSH LLDSNYNTVT PQQPPSLTAA ATVSSQPNPP LSVCGFSGLP VFPSDRGGRN  120
VMMSVQPMDQ DSSSSSASPT VWVDAIIRDL IHSSTSVSIP QLIQNVRDII FPCNPNLGAL  180
LEYRLRSLML LDPSSSSDPS PQTFEPLYQI SNNPSPPQQQ QQHQQQQQQH KPPPPPIQQQ  240
ERENSSTDAP PQPETVTATV PAVQTNTAEA LRERKEEIKR QKQDEEGLHL LTLLLQCAEA  300
VSADNLEEAN KLLLEISQLS TPYGTSAQRV AAYFSEAMSA RLLNSCLGIY AALPSRWMPQ  360
THSLKMVSAF QVFNGISPLV KFSHFTANQA IQEAFEKEDS VHIIDLDIMQ GLQWPGLFHI  420
LASRPGGPPH VRLTGLGTSM EALQATGKRL SDFADKLGLP FEFCPLAEKV GNLDTERLNV  480
RKREAVAVHW LQHSLYDVTG SDAHTLWLLQ RLAPKVVTVV EQDLSHAGSF LGRFVEAIHY  540
YSALFDSLGA SYGEESEERH VVEQQLLSKE IRNVLAVGGP SRSGEVKFES WREKMQQCGF  600
KGISLAGNAA TQATLLLGMF PSDGYTLVDD NGTLKLGWKD LSLLTASAWT PRS
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5b3g_A0.02746533382Protein SCARECROW
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.9320.0floral meristem| flower| root| vegetative tissue
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO425659170.0
Genevisible251890_at0.0
Expression AtlasAT3G54220-
AtGenExpressAT3G54220-
ATTED-IIAT3G54220-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Detected in the ground tissue of late heart-stage embryos. After germination, expressed also in the L1 layer throughout the shoot apical meristem including the peripheral zone. Detected in most tissues of young leaf primordia, except in the presumptive vasculature. In mature leaves, expressed in bundle sheath cells. Detected in inflorescence stems in a single internal cell layer corresponding to the starch sheath. {ECO:0000269|PubMed:10631180, ECO:0000269|PubMed:8756724}.
UniprotTISSUE SPECIFICITY: Expressed in siliques, leaves and roots. Detected in the initial daughter cell before its asymmetric division and remains expressed only in the endodermal cell layer after the division. Expressed in the endodermis or starch sheath of the seedling hypocotyl, in the leaf bundle sheath cells and the root quiescent center. {ECO:0000269|PubMed:10631180, ECO:0000269|PubMed:10850497, ECO:0000269|PubMed:11565032, ECO:0000269|PubMed:8756724, ECO:0000269|PubMed:9375406}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a member of a novel family having similarity to DNA binding proteins containing basic-leucine zipper regions; scr is expressed in cortex/endodermal initial cells and in the endodermal cell lineage. Regulates the radial organization of the root. Is required cell-autonomously for distal specification of the quiescent center, which in turn regulates stem cell fate of immediately surrounding cells. SCR appears to be a direct target of SHR.
UniProtTranscription factor required for quiescent center cells specification and maintenance of surrounding stem cells, and for the asymmetric cell division involved in radial pattern formation in roots. Essential for cell division but not differentiation of the ground tissue. Also required for normal shoot gravitropism. Regulates the radial organization of the shoot axial organs. Binds to the promoter of MGP, NUC, RLK and SCL3. Restricts SHR movment and sequesters it into the nucleus of the endodermis. {ECO:0000269|PubMed:10631180, ECO:0000269|PubMed:12569126, ECO:0000269|PubMed:15142972, ECO:0000269|PubMed:15314023, ECO:0000269|PubMed:16640459, ECO:0000269|PubMed:17446396, ECO:0000269|PubMed:22921914, ECO:0000269|PubMed:24302889, ECO:0000269|PubMed:8819871, ECO:0000269|PubMed:9375406, ECO:0000269|PubMed:9670559}.
Function -- GeneRIF ? help Back to Top
  1. findings show that SCARECROW (SCR) blocks SHORTROOT (SHR) movement by sequestering it into the nucleus through protein-protein interaction and a safeguard mechanism that relies on a SHR/SCR-dependent positive feedback loop for SCR transcription
    [PMID: 17446396]
  2. LHP1 acts together with SCR to suppress premature middle cortex formation.
    [PMID: 19228333]
  3. SHR and SCR primarily function as general regulators of cell proliferation in leaves.
    [PMID: 20739610]
  4. Studies indicate that GRAS proteins are named after the first three members: GIBBERELLIC ACID INSENSITIVE (GAI), REPRESSOR of GAI (RGA) and SCARECROW (SCR), and they have diverse roles in plant development and signal transduction.
    [PMID: 21732203]
  5. The MKO1 gene plays an important role in the maintenance of the root apical meristem proliferative capacity and indeterminate root growth, which apparently acts independently of the SCR/SHR and WOX5 regulatory pathways.
    [PMID: 21744091]
  6. JKD directly regulates SCR and MGP expression in cooperation with SHR, SCR and MGP.
    [PMID: 21935722]
  7. SHR and SCR regulate a similar but not identical set of stress response genes.
    [PMID: 22312006]
  8. Study tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root finds spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein.
    [PMID: 22921914]
  9. SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis.
    [PMID: 23072993]
  10. SHRUBBY (At5g24740) controls root growth downstream of gibberellic acid in part through the regulation of SHORT-ROOT and SCARECROW.
    [PMID: 23444357]
  11. A defect in SGR1 leads to leaf stay-green phenotypes in Arabidopsis and rice.
    [PMID: 24043799]
  12. RBR interacts with the stem cell transcription factor SCARECROW (SCR) through an LxCxE motif.
    [PMID: 24302889]
  13. Mutations in three GRAS family transcription factors, SHORT-ROOT (SHR), SCARECROW (SCR) and SCARECROW-LIKE 23 (SCL23), affect BS cell fate in Arabidopsis thaliana.
    [PMID: 24517883]
  14. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR.
    [PMID: 24798139]
  15. Arabidopsis adventitious root formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1.
    [PMID: 25617411]
  16. Data show that SCARECROW-LIKE23 (SCL23) is a mobile protein that controls movement of SHORT-ROOT (SHR) and acts redundantly with SCARCROW (SCR) to specify endodermal fate in the root meristem.
    [PMID: 26415082]
  17. Data indicate that SEUSS (SEU) gene has distinct genetic interactions with SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3) genes.
    [PMID: 26818732]
  18. SCARECROW controls Arabidopsis root meristem size from the root endodermis tissue by regulating the DELLA protein RGA that in turn mediates the regulation of ARR1 levels at the transition zone.
    [PMID: 26848984]
  19. results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots.
    [PMID: 27353361]
  20. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants.
    [PMID: 27432873]
  21. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells.
    [PMID: 27510971]
  22. modeling, transcriptional reporters, and synthetic promoters support a mechanism whereby expression at the top of the SHORTROOT-SCARECROW cascade is established through opposing activities of activators and repressors
    [PMID: 27923776]
  23. In the crystal structures of the SHR-SCR binary and JACKDAW (JKD)/IDD10-SHR-SCR ternary complexes, each GRAS domain comprises one alpha/beta core subdomain with an alpha-helical cap that mediates heterodimerization by forming an intermolecular helix bundle.
    [PMID: 28211915]
  24. This study showed that INDETERMINATE DOMAIN PROTEIN (ID) binding sequences have a crucial role in the regulation of SCARECROW and SHORT-ROOT expression.[SCARECROW]
    [PMID: 28324206]
  25. This study showed that INDETERMINATE DOMAIN PROTEIN binding sequences have a crucial role in the regulation of SCARECROW and SHORT-ROOT expression.
    [PMID: 28324206]
  26. SCR and PLETHORA genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically.
    [PMID: 30018102]
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT3G54220.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by SHR and by itself. {ECO:0000269|PubMed:10850497, ECO:0000269|PubMed:11565032, ECO:0000269|PubMed:15314023}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT4G37650 (A), AT5G03150 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G03840(A), AT3G12280(A), AT5G03150(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT4G37650
IntActSearch Q9M384
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Plants have a greatly reduced root length and only a single cell layer between the epidermis and the pericycle. The sgrl-1 mutant has no gravitropic response either in inflorescence stems or in hypocotyls. {ECO:0000269|PubMed:10631180, ECO:0000269|PubMed:8756724, ECO:0000269|PubMed:8819871, ECO:0000269|PubMed:9670559}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G54220
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0563150.0AY056315.1 Arabidopsis thaliana putative SCARECROW1 protein (At3g54220) mRNA, complete cds.
GenBankAY0808400.0AY080840.1 Arabidopsis thaliana putative SCARECROW1 protein (At3g54220) mRNA, complete cds.
GenBankAY1139910.0AY113991.1 Arabidopsis thaliana putative SCARECROW1 protein (At3g54220) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_190990.10.0GRAS family transcription factor
SwissprotQ9M3840.0SCR_ARATH; Protein SCARECROW
TrEMBLA0A178V8F90.0A0A178V8F9_ARATH; SGR1
STRINGAT3G54220.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM81642640
Representative plantOGRP21831437
Publications ? help Back to Top
  1. Tasaka M,Kato T,Fukaki H
    The endodermis and shoot gravitropism
    Trends Plant Sci., 1999. 4(3): p. 103-7
    [PMID:10322541]
  2. Liu YG, et al.
    Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(11): p. 6535-40
    [PMID:10339623]
  3. Pysh LD,Wysocka-Diller JW,Camilleri C,Bouchez D,Benfey PN
    The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes.
    Plant J., 1999. 18(1): p. 111-9
    [PMID:10341448]
  4. Wysocka-Diller JW,Helariutta Y,Fukaki H,Malamy JE,Benfey PN
    Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot.
    Development, 2000. 127(3): p. 595-603
    [PMID:10631180]
  5. Helariutta Y, et al.
    The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling.
    Cell, 2000. 101(5): p. 555-67
    [PMID:10850497]
  6. Lim J, et al.
    Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems.
    Plant Cell, 2000. 12(8): p. 1307-18
    [PMID:10948251]
  7. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  8. Kaya H, et al.
    FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems.
    Cell, 2001. 104(1): p. 131-42
    [PMID:11163246]
  9. Sassa N,Matsushita Y,Nakamura T,Nyunoya H
    The molecular characterization and in situ expression pattern of pea SCARECROW gene.
    Plant Cell Physiol., 2001. 42(4): p. 385-94
    [PMID:11333309]
  10. Nakajima K,Sena G,Nawy T,Benfey PN
    Intercellular movement of the putative transcription factor SHR in root patterning.
    Nature, 2001. 413(6853): p. 307-11
    [PMID:11565032]
  11. Barton MK
    Giving meaning to movement.
    Cell, 2001. 107(2): p. 129-32
    [PMID:11672520]
  12. Morita MT, et al.
    Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis.
    Plant Cell, 2002. 14(1): p. 47-56
    [PMID:11826298]
  13. Kato T,Morita MT,Tasaka M
    Role of endodermal cell vacuoles in shoot gravitropism.
    J. Plant Growth Regul., 2002. 21(2): p. 113-9
    [PMID:12024223]
  14. Long JA,Woody S,Poethig S,Meyerowitz EM,Barton MK
    Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus.
    Development, 2002. 129(12): p. 2797-806
    [PMID:12050130]
  15. Mylona P,Linstead P,Martienssen R,Dolan L
    SCHIZORIZA controls an asymmetric cell division and restricts epidermal identity in the Arabidopsis root.
    Development, 2002. 129(18): p. 4327-34
    [PMID:12183384]
  16. Charrier B,Champion A,Henry Y,Kreis M
    Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction.
    Plant Physiol., 2002. 130(2): p. 577-90
    [PMID:12376626]
  17. Stasolla C, et al.
    The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos.
    Plant Physiol., 2003. 131(1): p. 49-60
    [PMID:12529514]
  18. Sabatini S,Heidstra R,Wildwater M,Scheres B
    SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem.
    Genes Dev., 2003. 17(3): p. 354-8
    [PMID:12569126]
  19. Day RB,Shibuya N,Minami E
    Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor.
    Biochim. Biophys. Acta, 2003. 1625(3): p. 261-8
    [PMID:12591613]
  20. Grube RC,Brennan EB,Ryder EJ
    Characterization and genetic analysis of a lettuce (Lactuca sativa L.) mutant, weary, that exhibits reduced gravitropic response in hypocotyls and inflorescence stems.
    J. Exp. Bot., 2003. 54(385): p. 1259-68
    [PMID:12654877]
  21. Boutet S, et al.
    Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance.
    Curr. Biol., 2003. 13(10): p. 843-8
    [PMID:12747833]
  22. Yano D, et al.
    A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(14): p. 8589-94
    [PMID:12815100]
  23. Kamiya N,Itoh J,Morikami A,Nagato Y,Matsuoka M
    The SCARECROW gene's role in asymmetric cell divisions in rice plants.
    Plant J., 2003. 36(1): p. 45-54
    [PMID:12974810]
  24. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  25. J
    Growing up green: cellular basis of plant development.
    Mech. Dev., 2003. 120(11): p. 1395-406
    [PMID:14623445]
  26. Soga K,Wakabayashi K,Kamisaka S,Hoson T
    Graviperception in growth inhibition of plant shoots under hypergravity conditions produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors.
    Planta, 2004. 218(6): p. 1054-61
    [PMID:14716566]
  27. Bolle C
    The role of GRAS proteins in plant signal transduction and development.
    Planta, 2004. 218(5): p. 683-92
    [PMID:14760535]
  28. Suzuki T, et al.
    A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristems.
    Plant J., 2004. 38(4): p. 673-84
    [PMID:15125773]
  29. Sena G,Jung JW,Benfey PN
    A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression.
    Development, 2004. 131(12): p. 2817-26
    [PMID:15142972]
  30. Heidstra R,Welch D,Scheres B
    Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division.
    Genes Dev., 2004. 18(16): p. 1964-9
    [PMID:15314023]
  31. Aida M, et al.
    The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche.
    Cell, 2004. 119(1): p. 109-20
    [PMID:15454085]
  32. Montiel G,Gantet P,Jay-Allemand C,Breton C
    Transcription factor networks. Pathways to the knowledge of root development.
    Plant Physiol., 2004. 136(3): p. 3478-85
    [PMID:15542499]
  33. Paquette AJ,Benfey PN
    Maturation of the ground tissue of the root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT.
    Plant Physiol., 2005. 138(2): p. 636-40
    [PMID:15955927]
  34. Fukaki H,Nakao Y,Okushima Y,Theologis A,Tasaka M
    Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.
    Plant J., 2005. 44(3): p. 382-95
    [PMID:16236149]
  35. Kitazawa D, et al.
    Shoot circumnutation and winding movements require gravisensing cells.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(51): p. 18742-7
    [PMID:16339910]
  36. Wildwater M, et al.
    The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots.
    Cell, 2005. 123(7): p. 1337-49
    [PMID:16377572]
  37. Xu J, et al.
    A molecular framework for plant regeneration.
    Science, 2006. 311(5759): p. 385-8
    [PMID:16424342]
  38. Levesque MP, et al.
    Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis.
    PLoS Biol., 2006. 4(5): p. e143
    [PMID:16640459]
  39. Morita MT, et al.
    A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems.
    Plant J., 2006. 47(4): p. 619-28
    [PMID:16813575]
  40. Imin N,Nizamidin M,Wu T,Rolfe BG
    Factors involved in root formation in Medicago truncatula.
    J. Exp. Bot., 2007. 58(3): p. 439-51
    [PMID:17158109]
  41. Dello Ioio R, et al.
    Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation.
    Curr. Biol., 2007. 17(8): p. 678-82
    [PMID:17363254]
  42. K
    A method for cellular localization of gene expression via quantitative in situ hybridization in plants.
    Plant J., 2007. 50(1): p. 159-75
    [PMID:17397510]
  43. Cui H, et al.
    An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants.
    Science, 2007. 316(5823): p. 421-5
    [PMID:17446396]
  44. Ortega-Mart
    Ethylene modulates stem cell division in the Arabidopsis thaliana root.
    Science, 2007. 317(5837): p. 507-10
    [PMID:17656722]
  45. Welch D, et al.
    Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action.
    Genes Dev., 2007. 21(17): p. 2196-204
    [PMID:17785527]
  46. Zentella R, et al.
    Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.
    Plant Cell, 2007. 19(10): p. 3037-57
    [PMID:17933900]
  47. Ten Hove CA,Heidstra R
    Who begets whom? Plant cell fate determination by asymmetric cell division.
    Curr. Opin. Plant Biol., 2008. 11(1): p. 34-41
    [PMID:18162432]
  48. Saiga S, et al.
    The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance.
    Development, 2008. 135(10): p. 1751-9
    [PMID:18403411]
  49. Dinneny JR, et al.
    Cell identity mediates the response of Arabidopsis roots to abiotic stress.
    Science, 2008. 320(5878): p. 942-5
    [PMID:18436742]
  50. Lee MH, et al.
    Large-scale analysis of the GRAS gene family in Arabidopsis thaliana.
    Plant Mol. Biol., 2008. 67(6): p. 659-70
    [PMID:18500650]
  51. Iyer-Pascuzzi AS,Benfey PN
    Transcriptional networks in root cell fate specification.
    Biochim. Biophys. Acta, 2009. 1789(4): p. 315-25
    [PMID:18973837]
  52. Casson SA,Topping JF,Lindsey K
    MERISTEM-DEFECTIVE, an RS domain protein, is required for the correct meristem patterning and function in Arabidopsis.
    Plant J., 2009. 57(5): p. 857-69
    [PMID:19000164]
  53. Miyashima S,Hashimoto T,Nakajima K
    ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway.
    Plant Cell Physiol., 2009. 50(3): p. 626-34
    [PMID:19188262]
  54. Cui H,Benfey PN
    Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root.
    Plant J., 2009. 58(6): p. 1016-27
    [PMID:19228333]
  55. Boggs NA,Dwyer KG,Nasrallah ME,Nasrallah JB
    In vivo detection of residues required for ligand-selective activation of the S-locus receptor in Arabidopsis.
    Curr. Biol., 2009. 19(9): p. 786-91
    [PMID:19375322]
  56. Peer WA, et al.
    Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis.
    Plant Cell, 2009. 21(6): p. 1693-721
    [PMID:19531600]
  57. Ticconi CA, et al.
    ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(33): p. 14174-9
    [PMID:19666499]
  58. Carlsbecker A, et al.
    Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.
    Nature, 2010. 465(7296): p. 316-21
    [PMID:20410882]
  59. Pernas M,Ryan E,Dolan L
    SCHIZORIZA controls tissue system complexity in plants.
    Curr. Biol., 2010. 20(9): p. 818-23
    [PMID:20417101]
  60. Ren G, et al.
    Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis.
    J Integr Plant Biol, 2010. 52(5): p. 496-504
    [PMID:20537045]
  61. Sozzani R, et al.
    Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth.
    Nature, 2010. 466(7302): p. 128-32
    [PMID:20596025]
  62. Wang L,Mai YX,Zhang YC,Luo Q,Yang HQ
    MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis.
    Mol Plant, 2010. 3(5): p. 794-806
    [PMID:20720155]
  63. Dhondt S, et al.
    SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle.
    Plant Physiol., 2010. 154(3): p. 1183-95
    [PMID:20739610]
  64. Azpeitia E,Ben
    Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche.
    BMC Syst Biol, 2010. 4: p. 134
    [PMID:20920363]
  65. Zhou W, et al.
    Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche.
    Plant Cell, 2010. 22(11): p. 3692-709
    [PMID:21045165]
  66. Kim K, et al.
    Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(4): p. 1729-34
    [PMID:21220341]
  67. Heo JO, et al.
    Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(5): p. 2166-71
    [PMID:21245304]
  68. Sun X, et al.
    A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development.
    Plant Mol. Biol., 2011. 77(3): p. 205-23
    [PMID:21732203]
  69. Hern
    Apical meristem exhaustion during determinate primary root growth in the moots koom 1 mutant of Arabidopsis thaliana.
    Planta, 2011. 234(6): p. 1163-77
    [PMID:21744091]
  70. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
    [PMID:21798944]
  71. Koizumi K,Wu S,MacRae-Crerar A,Gallagher KL
    An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor.
    Curr. Biol., 2011. 21(18): p. 1559-64
    [PMID:21924907]
  72. Ogasawara H,Kaimi R,Colasanti J,Kozaki A
    Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT.
    Plant Mol. Biol., 2011. 77(4-5): p. 489-99
    [PMID:21935722]
  73. Iyer-Pascuzzi AS, et al.
    Cell identity regulators link development and stress responses in the Arabidopsis root.
    Dev. Cell, 2011. 21(4): p. 770-82
    [PMID:22014526]
  74. Cui H,Hao Y,Kong D
    SCARECROW has a SHORT-ROOT-independent role in modulating the sugar response.
    Plant Physiol., 2012. 158(4): p. 1769-78
    [PMID:22312006]
  75. Pauluzzi G, et al.
    Surfing along the root ground tissue gene network.
    Dev. Biol., 2012. 365(1): p. 14-22
    [PMID:22349629]
  76. Cui H
    Killing two birds with one stone: transcriptional regulators coordinate development and stress responses in plants.
    Plant Signal Behav, 2012. 7(6): p. 701-3
    [PMID:22580500]
  77. Cruz-Ram
    A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division.
    Cell, 2012. 150(5): p. 1002-15
    [PMID:22921914]
  78. Koizumi K,Hayashi T,Gallagher KL
    SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis.
    Plant Signal Behav, 2012. 7(12): p. 1573-7
    [PMID:23072993]
  79. Koren D, et al.
    Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity.
    New Phytol., 2013. 198(3): p. 866-74
    [PMID:23425316]
  80. Koizumi K,Gallagher KL
    Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning.
    Development, 2013. 140(6): p. 1292-300
    [PMID:23444357]
  81. Moubayidin L, et al.
    Spatial coordination between stem cell activity and cell differentiation in the root meristem.
    Dev. Cell, 2013. 26(4): p. 405-15
    [PMID:23987513]
  82. Delmas F, et al.
    ABI3 controls embryo degreening through Mendel's I locus.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(40): p. E3888-94
    [PMID:24043799]
  83. Cruz-Ram
    A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer.
    PLoS Biol., 2013. 11(11): p. e1001724
    [PMID:24302889]
  84. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  85. Tian H,Jia Y,Niu T,Yu Q,Ding Z
    The key players of the primary root growth and development also function in lateral roots in Arabidopsis.
    Plant Cell Rep., 2014. 33(5): p. 745-53
    [PMID:24504658]
  86. Cui H,Kong D,Liu X,Hao Y
    SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana.
    Plant J., 2014. 78(2): p. 319-27
    [PMID:24517883]
  87. Reyes-Hernández BJ, et al.
    The root indeterminacy-to-determinacy developmental switch is operated through a folate-dependent pathway in Arabidopsis thaliana.
    New Phytol., 2014. 202(4): p. 1223-36
    [PMID:24635769]
  88. Wang Z,Mao JL,Zhao YJ,Li CY,Xiang CB
    L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.
    J Integr Plant Biol, 2015. 57(2): p. 186-97
    [PMID:24798139]
  89. Gao X,Wang C,Cui H
    Identification of bundle sheath cell fate factors provides new tools for C3-to-C4 engineering.
    Plant Signal Behav, 2018.
    [PMID:24819776]
  90. Ron M, et al.
    Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model.
    Plant Physiol., 2014. 166(2): p. 455-69
    [PMID:24868032]
  91. Wu S, et al.
    A plausible mechanism, based upon Short-Root movement, for regulating the number of cortex cell layers in roots.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(45): p. 16184-9
    [PMID:25352666]
  92. Della Rovere F, et al.
    Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in
    Ann. Bot., 2015. 115(4): p. 617-28
    [PMID:25617411]
  93. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  94. Jia Y, et al.
    The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development.
    J. Exp. Bot., 2015. 66(15): p. 4631-42
    [PMID:25998905]
  95. Zhang M, et al.
    A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.
    Plant J., 2015. 83(4): p. 582-99
    [PMID:26072661]
  96. Moreno-Risueno MA, et al.
    Transcriptional control of tissue formation throughout root development.
    Science, 2015. 350(6259): p. 426-30
    [PMID:26494755]
  97. Gong X, et al.
    SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.
    Plant Physiol., 2016. 170(3): p. 1675-83
    [PMID:26818732]
  98. Moubayidin L, et al.
    A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis.
    Planta, 2016. 243(5): p. 1159-68
    [PMID:26848984]
  99. Madmon O, et al.
    Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions.
    Planta, 2016. 243(6): p. 1419-27
    [PMID:26919985]
  100. Lee SA, et al.
    Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.
    Mol Plant, 2016. 9(6): p. 870-84
    [PMID:26970019]
  101. Benfey PN
    Defining the Path from Stem Cells to Differentiated Tissue.
    Curr. Top. Dev. Biol., 2016. 116: p. 35-43
    [PMID:26970612]
  102. Li Q,Zhao Y,Yue M,Xue Y,Bao S
    The Protein Arginine Methylase 5 (PRMT5/SKB1) Gene Is Required for the Maintenance of Root Stem Cells in Response to DNA Damage.
    J Genet Genomics, 2016. 43(4): p. 187-97
    [PMID:27090604]
  103. Clark NM, et al.
    Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.
    Elife, 2017.
    [PMID:27288545]
  104. Choi JW,Lim J
    Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation.
    Mol. Cells, 2016. 39(7): p. 524-9
    [PMID:27306644]
  105. Yoon EK, et al.
    Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots.
    Mol Plant, 2016. 9(8): p. 1197-1209
    [PMID:27353361]
  106. Waszczak C, et al.
    SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.
    Plant Cell, 2016. 28(8): p. 1844-59
    [PMID:27432873]
  107. Goh T, et al.
    Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.
    Development, 2016. 143(18): p. 3363-71
    [PMID:27510971]
  108. Yu Q, et al.
    A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.
    PLoS Genet., 2016. 12(9): p. e1006175
    [PMID:27583367]
  109. Sparks EE, et al.
    Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors.
    Dev. Cell, 2016. 39(5): p. 585-596
    [PMID:27923776]
  110. Hirano Y, et al.
    Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD.
    Nat Plants, 2017. 3: p. 17010
    [PMID:28211915]
  111. Kobayashi A,Miura S,Kozaki A
    INDETERMINATE DOMAIN PROTEIN binding sequences in the 5'-untranslated region and promoter of the SCARECROW gene play crucial and distinct roles in regulating SCARECROW expression in roots and leaves.
    Plant Mol. Biol., 2017. 94(1-2): p. 1-13
    [PMID:28324206]
  112. Díaz-Triviño S,Long Y,Scheres B,Blilou I
    Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.
    Methods Mol. Biol., 2017. 1629: p. 83-103
    [PMID:28623581]
  113. Long Y, et al.
    In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots.
    Nature, 2017. 548(7665): p. 97-102
    [PMID:28746306]
  114. Bruno L, et al.
    In Arabidopsis thaliana Cadmium Impact on the Growth of Primary Root by Altering SCR Expression and Auxin-Cytokinin Cross-Talk.
    Front Plant Sci, 2017. 8: p. 1323
    [PMID:28798767]
  115. Mira MM, et al.
    Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit.
    J. Exp. Bot., 2017. 68(20): p. 5653-5668
    [PMID:29059380]
  116. Bustillo-Avendaño E, et al.
    Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis.
    Plant Physiol., 2018. 176(2): p. 1709-1727
    [PMID:29233938]
  117. Ercoli MF, et al.
    GIF Transcriptional Coregulators Control Root Meristem Homeostasis.
    Plant Cell, 2018. 30(2): p. 347-359
    [PMID:29352064]
  118. Shimotohno A,Heidstra R,Blilou I,Scheres B
    Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules.
    Genes Dev., 2018. 32(15-16): p. 1085-1100
    [PMID:30018102]
  119. Di Laurenzio L, et al.
    The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root.
    Cell, 1996. 86(3): p. 423-33
    [PMID:8756724]
  120. Fukaki H,Fujisawa H,Tasaka M
    SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana.
    Plant Physiol., 1996. 110(3): p. 945-55
    [PMID:8819871]
  121. Yamauchi Y,Fukaki H,Fujisawa H,Tasaka M
    Mutations in the SGR4, SGR5 and SGR6 loci of Arabidopsis thaliana alter the shoot gravitropism.
    Plant Cell Physiol., 1997. 38(5): p. 530-5
    [PMID:9210330]
  122. Truong HN,Caboche M,Daniel-Vedele F
    Sequence and characterization of two Arabidopsis thaliana cDNAs isolated by functional complementation of a yeast gln3 gdh1 mutant.
    FEBS Lett., 1997. 410(2-3): p. 213-8
    [PMID:9237632]
  123. Malamy JE,Benfey PN
    Analysis of SCARECROW expression using a rapid system for assessing transgene expression in Arabidopsis roots.
    Plant J., 1997. 12(4): p. 957-63
    [PMID:9375406]
  124. Wysocka-Diller JW,Benfey PN
    Root development: signaling down and around.
    Bioessays, 1997. 19(11): p. 959-65
    [PMID:9394618]
  125. Silverstone AL,Ciampaglio CN,Sun T
    The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway.
    Plant Cell, 1998. 10(2): p. 155-69
    [PMID:9490740]
  126. Fukaki H, et al.
    Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana.
    Plant J., 1998. 14(4): p. 425-30
    [PMID:9670559]