- Riechmann JL, et al.
Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000. 290(5499): p. 2105-10 [PMID:11118137] - Heim MA, et al.
The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol., 2003. 20(5): p. 735-47 [PMID:12679534] - Toledo-Ortiz G,Huq E,Quail PH
The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003. 15(8): p. 1749-70 [PMID:12897250] - Ohashi-Ito K,Bergmann DC
Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell, 2006. 18(10): p. 2493-505 [PMID:17088607] - MacAlister CA,Ohashi-Ito K,Bergmann DC
Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature, 2007. 445(7127): p. 537-40 [PMID:17183265] - Pillitteri LJ,Sloan DB,Bogenschutz NL,Torii KU
Termination of asymmetric cell division and differentiation of stomata. Nature, 2007. 445(7127): p. 501-5 [PMID:17183267] - Pillitteri LJ,Torii KU
Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays, 2007. 29(9): p. 861-70 [PMID:17691100] - Serna L
bHLH proteins know when to make a stoma. Trends Plant Sci., 2007. 12(11): p. 483-5 [PMID:17928257] - Ohashi-Ito K
[Three bHLH master regulators and cell-cell interaction involved in stomatal development] Tanpakushitsu Kakusan Koso, 2008. 53(6): p. 747-52 [PMID:18453151] - Kanaoka MM, et al.
SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation. Plant Cell, 2008. 20(7): p. 1775-85 [PMID:18641265] - Serna L
Emerging parallels between stomatal and muscle cell lineages. Plant Physiol., 2009. 149(4): p. 1625-31 [PMID:19201912] - Boccalandro HE, et al.
Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol., 2009. 150(2): p. 1083-92 [PMID:19363093] - Liu T,Ohashi-Ito K,Bergmann DC
Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development, 2009. 136(13): p. 2265-76 [PMID:19502487] - Torii KU,Kanaoka MM,Pillitteri LJ,Bogenschutz NL
Stomatal development: three steps for cell-type differentiation. Plant Signal Behav, 2007. 2(4): p. 311-3 [PMID:19704632] - Kang CY,Lian HL,Wang FF,Huang JR,Yang HQ
Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell, 2009. 21(9): p. 2624-41 [PMID:19794114] - Peterson KM,Rychel AL,Torii KU
Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. Plant Cell, 2010. 22(2): p. 296-306 [PMID:20179138] - Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation, 2010. 80(1): p. 1-8 [PMID:20219281] - Hachez C,Ohashi-Ito K,Dong J,Bergmann DC
Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. Plant Physiol., 2011. 155(3): p. 1458-72 [PMID:21245191] - MacAlister CA,Bergmann DC
Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants. Evol. Dev., 2011 Mar-Apr. 13(2): p. 182-92 [PMID:21410874] - Serna L
Stomatal development in Arabidopsis and grasses: differences and commonalities. Int. J. Dev. Biol., 2011. 55(1): p. 5-10 [PMID:21425077] - Arabidopsis Interactome Mapping Consortium
Evidence for network evolution in an Arabidopsis interactome map. Science, 2011. 333(6042): p. 601-7 [PMID:21798944] - Yang J,Isabel Ordiz M,Jaworski JG,Beachy RN
Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiol. Biochem., 2011. 49(12): p. 1448-55 [PMID:22078383] - Tricker PJ,Gibbings JG,Rodr
Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot., 2012. 63(10): p. 3799-813 [PMID:22442411] - Tricker PJ,L
Transgenerational, dynamic methylation of stomata genes in response to low relative humidity. Int J Mol Sci, 2013. 14(4): p. 6674-89 [PMID:23531533] - Lee E,Lucas JR,Sack FD
Deep functional redundancy between FAMA and FOUR LIPS in stomatal development. Plant J., 2014. 78(4): p. 555-65 [PMID:24571519] - Lee E,Lucas JR,Goodrich J,Sack FD
Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and FAMA transcription factor genes. Plant J., 2014. 78(4): p. 566-77 [PMID:24654956] - Matos JL, et al.
Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. Elife, 2015. [PMID:25303364] - Li M,Sack FD
Myrosin idioblast cell fate and development are regulated by the Arabidopsis transcription factor FAMA, the auxin pathway, and vesicular trafficking. Plant Cell, 2014. 26(10): p. 4053-66 [PMID:25304201] - Shirakawa M, et al.
FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis. Plant Cell, 2014. 26(10): p. 4039-52 [PMID:25304202] - Chen L, et al.
NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis. Development, 2016. 143(9): p. 1600-11 [PMID:26989174] - Lee JH,Jung JH,Park CM
Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. Plant Cell, 2017. 29(11): p. 2817-2830 [PMID:29070509] - Han X, et al.
Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons. Plant Physiol., 2018. 176(4): p. 2871-2885 [PMID:29496884] - Li X,Yang R,Chen H
The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. PLoS ONE, 2018. 13(3): p. e0193458 [PMID:29513733]
|