- Halliday KJ,Hudson M,Ni M,Qin M,Quail PH
poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc. Natl. Acad. Sci. U.S.A., 1999. 96(10): p. 5832-7 [PMID:10318970] - Ni M,Tepperman JM,Quail PH
Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature, 1999. 400(6746): p. 781-4 [PMID:10466729] - Martínez-García JF,Huq E,Quail PH
Direct targeting of light signals to a promoter element-bound transcription factor. Science, 2000. 288(5467): p. 859-63 [PMID:10797009] - Fairchild CD,Schumaker MA,Quail PH
HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev., 2000. 14(18): p. 2377-91 [PMID:10995393] - Zhu Y,Tepperman JM,Fairchild CD,Quail PH
Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc. Natl. Acad. Sci. U.S.A., 2000. 97(24): p. 13419-24 [PMID:11069292] - Riechmann JL, et al.
Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000. 290(5499): p. 2105-10 [PMID:11118137] - Quail PH
Phytochrome-interacting factors. Semin. Cell Dev. Biol., 2000. 11(6): p. 457-66 [PMID:11145875] - Xu Y,Johnson CH
A clock- and light-regulated gene that links the circadian oscillator to LHCB gene expression. Plant Cell, 2001. 13(6): p. 1411-25 [PMID:11402169] - Makino S,Matsushika A,Kojima M,Yamashino T,Mizuno T
The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol., 2002. 43(1): p. 58-69 [PMID:11828023] - Matsushika A,Makino S,Kojima M,Yamashino T,Mizuno T
The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: II. Characterization with CCA1-overexpressing plants. Plant Cell Physiol., 2002. 43(1): p. 118-22 [PMID:11828029] - Seki M, et al.
Functional annotation of a full-length Arabidopsis cDNA collection. Science, 2002. 296(5565): p. 141-5 [PMID:11910074] - Huq E,Quail PH
PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J., 2002. 21(10): p. 2441-50 [PMID:12006496] - Devlin PF
Signs of the time: environmental input to the circadian clock. J. Exp. Bot., 2002. 53(374): p. 1535-50 [PMID:12096092] - Kircher S, et al.
Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 2002. 14(7): p. 1541-55 [PMID:12119373] - Goda H,Shimada Y,Asami T,Fujioka S,Yoshida S
Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol., 2002. 130(3): p. 1319-34 [PMID:12427998] - M
Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell, 2003. 15(1): p. 223-36 [PMID:12509533] - Kim JY,Song HR,Taylor BL,Carr
Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J., 2003. 22(4): p. 935-44 [PMID:12574129] - Heim MA, et al.
The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol., 2003. 20(5): p. 735-47 [PMID:12679534] - Eriksson ME,Millar AJ
The circadian clock. A plant's best friend in a spinning world. Plant Physiol., 2003. 132(2): p. 732-8 [PMID:12805602] - Yamashino T, et al.
A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol., 2003. 44(6): p. 619-29 [PMID:12826627] - Toledo-Ortiz G,Huq E,Quail PH
The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003. 15(8): p. 1749-70 [PMID:12897250] - Kim J, et al.
Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell, 2003. 15(10): p. 2399-407 [PMID:14508006] - Kaczorowski KA,Quail PH
Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell, 2003. 15(11): p. 2654-65 [PMID:14563930] - Bauer D, et al.
Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell, 2004. 16(6): p. 1433-45 [PMID:15155879] - Fujimori T,Yamashino T,Kato T,Mizuno T
Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol., 2004. 45(8): p. 1078-86 [PMID:15356333] - Huq E, et al.
Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004. 305(5692): p. 1937-41 [PMID:15448264] - Khanna R, et al.
A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell, 2004. 16(11): p. 3033-44 [PMID:15486100] - Oh E, et al.
PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell, 2004. 16(11): p. 3045-58 [PMID:15486102] - Monte E, et al.
The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc. Natl. Acad. Sci. U.S.A., 2004. 101(46): p. 16091-8 [PMID:15505214] - Kevei E, et al.
Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol., 2006. 140(3): p. 933-45 [PMID:16428597] - Phee BK, et al.
Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics, 2006. 6(12): p. 3671-80 [PMID:16705748] - Al-Sady B,Ni W,Kircher S,Schäfer E,Quail PH
Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell, 2006. 23(3): p. 439-46 [PMID:16885032] - Shin J,Park E,Choi G
PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J., 2007. 49(6): p. 981-94 [PMID:17319847] - Ito S, et al.
Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana. Plant Cell Physiol., 2007. 48(7): p. 971-83 [PMID:17519251] - Brock MT,Tiffin P,Weinig C
Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana. Mol. Ecol., 2007. 16(14): p. 3050-62 [PMID:17614917] - Shen Y,Khanna R,Carle CM,Quail PH
Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol., 2007. 145(3): p. 1043-51 [PMID:17827270] - Alabadí D, et al.
Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J., 2008. 53(2): p. 324-35 [PMID:18053005] - Feng S, et al.
Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008. 451(7177): p. 475-9 [PMID:18216856] - de Lucas M, et al.
A molecular framework for light and gibberellin control of cell elongation. Nature, 2008. 451(7177): p. 480-4 [PMID:18216857] - Al-Sady B,Kikis EA,Monte E,Quail PH
Mechanistic duality of transcription factor function in phytochrome signaling. Proc. Natl. Acad. Sci. U.S.A., 2008. 105(6): p. 2232-7 [PMID:18245378] - Leivar P, et al.
The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell, 2008. 20(2): p. 337-52 [PMID:18252845] - Phee BK, et al.
A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. Biochem. J., 2008. 415(2): p. 247-55 [PMID:18564962] - Leung DW,Otomo C,Chory J,Rosen MK
Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway. Proc. Natl. Acad. Sci. U.S.A., 2008. 105(35): p. 12797-802 [PMID:18728185] - Leivar P, et al.
Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr. Biol., 2008. 18(23): p. 1815-23 [PMID:19062289] - Kikis EA,Oka Y,Hudson ME,Nagatani A,Quail PH
Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3. PLoS Genet., 2009. 5(1): p. e1000352 [PMID:19165330] - Shen Y, et al.
Phytochrome A mediates rapid red light-induced phosphorylation of Arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response. Plant Cell, 2009. 21(2): p. 494-506 [PMID:19208901] - Clack T, et al.
Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Plant Cell, 2009. 21(3): p. 786-99 [PMID:19286967] - Waters MT, et al.
GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell, 2009. 21(4): p. 1109-28 [PMID:19376934] - Shin J, et al.
Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A., 2009. 106(18): p. 7660-5 [PMID:19380720] - Stephenson PG,Fankhauser C,Terry MJ
PIF3 is a repressor of chloroplast development. Proc. Natl. Acad. Sci. U.S.A., 2009. 106(18): p. 7654-9 [PMID:19380736] - Lorrain S,Trevisan M,Pradervand S,Fankhauser C
Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Plant J., 2009. 60(3): p. 449-61 [PMID:19619162] - Gong W, et al.
The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant, 2008. 1(1): p. 27-41 [PMID:19802365] - Leivar P, et al.
Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell, 2009. 21(11): p. 3535-53 [PMID:19920208] - Wang FF,Lian HL,Kang CY,Yang HQ
Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant, 2010. 3(1): p. 246-59 [PMID:19965572] - Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation, 2010. 80(1): p. 1-8 [PMID:20219281] - Jang IC,Henriques R,Seo HS,Nagatani A,Chua NH
Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell, 2010. 22(7): p. 2370-83 [PMID:20605855] - Richter R,Behringer C,M
The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev., 2010. 24(18): p. 2093-104 [PMID:20844019] - Shin R,Jez JM,Basra A,Zhang B,Schachtman DP
14-3-3 proteins fine-tune plant nutrient metabolism. FEBS Lett., 2011. 585(1): p. 143-7 [PMID:21094157] - Giraud E, et al.
TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell, 2010. 22(12): p. 3921-34 [PMID:21183706] - Kim K, et al.
Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A., 2011. 108(4): p. 1729-34 [PMID:21220341] - Josse EM, et al.
A DELLA in disguise: SPATULA restrains the growth of the developing Arabidopsis seedling. Plant Cell, 2011. 23(4): p. 1337-51 [PMID:21478445] - Lozano-Juste J,Le
Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol., 2011. 156(3): p. 1410-23 [PMID:21562334] - Bu Q,Castillon A,Chen F,Zhu L,Huq E
Dimerization and blue light regulation of PIF1 interacting bHLH proteins in Arabidopsis. Plant Mol. Biol., 2011. 77(4-5): p. 501-11 [PMID:21928113] - Oka Y,Kong SG,Matsushita T
A non-covalently attached chromophore can mediate phytochrome B signaling in Arabidopsis. Plant Cell Physiol., 2011. 52(12): p. 2088-102 [PMID:22006939] - Sentandreu M, et al.
Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in Arabidopsis. Plant Cell, 2011. 23(11): p. 3974-91 [PMID:22108407] - Sun TP
Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book, 2008. 6: p. e0103 [PMID:22303234] - Soy J, et al.
Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant J., 2012. 71(3): p. 390-401 [PMID:22409654] - Pfeiffer A, et al.
Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc. Natl. Acad. Sci. U.S.A., 2012. 109(15): p. 5892-7 [PMID:22451940] - Leivar P,Monte E,Cohn MM,Quail PH
Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop. Mol Plant, 2012. 5(3): p. 734-49 [PMID:22492120] - Sentandreu M,Leivar P,Mart
Branching of the PIF3 regulatory network in Arabidopsis: roles of PIF3-regulated MIDAs in seedling development in the dark and in response to light. Plant Signal Behav, 2012. 7(4): p. 510-3 [PMID:22499182] - Yang DL, et al.
Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U.S.A., 2012. 109(19): p. E1192-200 [PMID:22529386] - Hughes RM,Vrana JD,Song J,Tucker CL
Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins. J. Biol. Chem., 2012. 287(26): p. 22165-72 [PMID:22577138] - Chen F, et al.
Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. Plant Cell, 2012. 24(5): p. 1907-20 [PMID:22582101] - Jang IC,Niu QW,Deng S,Zhao P,Chua NH
Enhancing protein stability with retained biological function in transgenic plants. Plant J., 2012. 72(2): p. 345-54 [PMID:22631228] - Jung CH,Wong CE,Singh MB,Bhalla PL
Comparative genomic analysis of soybean flowering genes. PLoS ONE, 2012. 7(6): p. e38250 [PMID:22679494] - Zhong S, et al.
A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr. Biol., 2012. 22(16): p. 1530-5 [PMID:22818915] - Park E, et al.
Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. Plant J., 2012. 72(4): p. 537-46 [PMID:22849408] - Galv
Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis. Genes Dev., 2012. 26(16): p. 1851-63 [PMID:22895253] - Yasui Y, et al.
The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis. Plant Cell, 2012. 24(8): p. 3248-63 [PMID:22904146] - Sairanen I, et al.
Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell, 2012. 24(12): p. 4907-16 [PMID:23209113] - Zhang Y, et al.
A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet., 2013. 9(1): p. e1003244 [PMID:23382695] - Efroni I, et al.
Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell, 2013. 24(4): p. 438-45 [PMID:23449474] - Liu X, et al.
PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings. Plant Cell, 2013. 25(4): p. 1258-73 [PMID:23548744] - Chen D, et al.
Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell, 2013. 25(5): p. 1657-73 [PMID:23645630] - Eprintsev AT,Fedorin DN,Igamberdiev AU
Ca²⁺ is involved in phytochrome A-dependent regulation of the succinate dehydrogenase gene sdh1-2 in Arabidopsis. J. Plant Physiol., 2013. 170(15): p. 1349-52 [PMID:23711731] - Nito K,Wong CC,Yates JR,Chory J
Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep, 2013. 3(6): p. 1970-9 [PMID:23746445] - Ni W, et al.
Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis. Plant Cell, 2013. 25(7): p. 2679-98 [PMID:23903316] - Bai S, et al.
PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. Mol Plant, 2014. 7(4): p. 616-25 [PMID:24157606] - Soy J,Leivar P,Monte E
PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5. J. Exp. Bot., 2014. 65(11): p. 2925-36 [PMID:24420574] - Li Y,Jing Y,Li J,Xu G,Lin R
Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiol., 2014. 164(4): p. 2068-80 [PMID:24569844] - Zhong S, et al.
Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proc. Natl. Acad. Sci. U.S.A., 2014. 111(11): p. 3913-20 [PMID:24599595] - Van Buskirk EK,Reddy AK,Nagatani A,Chen M
Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark. Plant Physiol., 2014. 165(2): p. 595-607 [PMID:24769533] - Ni W, et al.
A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science, 2014. 344(6188): p. 1160-4 [PMID:24904166] - Zhao Y,Zhou J,Xing D
Phytochrome B-mediated activation of lipoxygenase modulates an excess red light-induced defence response in Arabidopsis. J. Exp. Bot., 2014. 65(17): p. 4907-18 [PMID:24916071] - Zhang D,Jing Y,Jiang Z,Lin R
The Chromatin-Remodeling Factor PICKLE Integrates Brassinosteroid and Gibberellin Signaling during Skotomorphogenic Growth in Arabidopsis. Plant Cell, 2014. 26(6): p. 2472-2485 [PMID:24920333] - Wang Y, et al.
Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc. Natl. Acad. Sci. U.S.A., 2014. 111(28): p. 10359-64 [PMID:24982146] - Mar
Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. Plant Physiol., 2014. 166(2): p. 1022-32 [PMID:25118255] - Dong J, et al.
Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. Plant Cell, 2014. 26(9): p. 3630-45 [PMID:25248553] - Zhu L,Huq E
Suicidal co-degradation of the phytochrome interacting factor 3 and phytochrome B in response to light. Mol Plant, 2014. 7(12): p. 1709-11 [PMID:25281666] - Song Y, et al.
Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant, 2014. 7(12): p. 1776-87 [PMID:25296857] - Adams E,Diaz C,Hong JP,Shin R
14-3-3 proteins participate in light signaling through association with PHYTOCHROME INTERACTING FACTORs. Int J Mol Sci, 2014. 15(12): p. 22801-14 [PMID:25501334] - Bours R,Kohlen W,Bouwmeester HJ,van der Krol A
Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. Plant Physiol., 2015. 167(2): p. 517-30 [PMID:25516603] - Horvath DP, et al.
RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean. New Phytol., 2015. 207(1): p. 196-210 [PMID:25711503] - Jin J, et al.
An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. Mol. Biol. Evol., 2015. 32(7): p. 1767-73 [PMID:25750178] - Qiu Y, et al.
HEMERA Couples the Proteolysis and Transcriptional Activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis Photomorphogenesis. Plant Cell, 2015. 27(5): p. 1409-27 [PMID:25944101] - Geilen K,Böhmer M
Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in Arabidopsis thaliana. Sci Rep, 2015. 5: p. 13369 [PMID:26293691] - Galvão VC,Collani S,Horrer D,Schmid M
Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana. Plant J., 2015. 84(5): p. 949-62 [PMID:26466761] - Yue J, et al.
TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis. Plant Physiol., 2016. 170(3): p. 1381-97 [PMID:26704640] - Huang H, et al.
PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. Elife, 2016. 5: p. e13292 [PMID:26839287] - Eprintsev AT,Fedorin DN,Sazonova OV,Igamberdiev AU
Light inhibition of fumarase in Arabidopsis leaves is phytochrome A-dependent and mediated by calcium. Plant Physiol. Biochem., 2016. 102: p. 161-6 [PMID:26949024] - Soy J, et al.
Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters. Proc. Natl. Acad. Sci. U.S.A., 2016. 113(17): p. 4870-5 [PMID:27071129] - Pacín M,Semmoloni M,Legris M,Finlayson SA,Casal JJ
Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. New Phytol., 2016. 211(3): p. 967-79 [PMID:27105120] - Yoo J,Cho MH,Lee SW,Bhoo SH
Phytochrome-interacting ankyrin repeat protein 2 modulates phytochrome A-mediated PIF3 phosphorylation in light signal transduction. J. Biochem., 2016. 160(4): p. 243-249 [PMID:27143545] - Kumar I,Swaminathan K,Hudson K,Hudson ME
Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling. J. Exp. Bot., 2016. 67(14): p. 4231-40 [PMID:27262126] - Li K, et al.
DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun, 2016. 7: p. 11868 [PMID:27282989] - Jeong AR, et al.
New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity. Plant Physiol., 2016. 171(4): p. 2826-40 [PMID:27325667] - Martin G,Soy J,Monte E
Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes. Front Plant Sci, 2016. 7: p. 962 [PMID:27458465] - Yu Y,Huang R
Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis. Front Plant Sci, 2017. 8: p. 57 [PMID:28174592] - Zentella R, et al.
The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat. Chem. Biol., 2017. 13(5): p. 479-485 [PMID:28244988] - Ling JJ,Li J,Zhu D,Deng XW
Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. Proc. Natl. Acad. Sci. U.S.A., 2017. 114(13): p. 3539-3544 [PMID:28292892] - Kasulin L, et al.
A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina. Mol. Ecol., 2017. 26(13): p. 3389-3404 [PMID:28316114] - Shor E,Paik I,Kangisser S,Green R,Huq E
PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis. New Phytol., 2017. 215(1): p. 217-228 [PMID:28440582] - Ni W, et al.
PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat Commun, 2017. 8: p. 15236 [PMID:28492231] - Zhang X, et al.
A PIF1/PIF3-HY5-BBX23 Transcription Factor Cascade Affects Photomorphogenesis. Plant Physiol., 2017. 174(4): p. 2487-2500 [PMID:28687557] - Paik I,Kathare PK,Kim JI,Huq E
Expanding Roles of PIFs in Signal Integration from Multiple Processes. Mol Plant, 2017. 10(8): p. 1035-1046 [PMID:28711729] - Dong J, et al.
Light-Dependent Degradation of PIF3 by SCFEBF1/2 Promotes a Photomorphogenic Response in Arabidopsis. Curr. Biol., 2017. 27(16): p. 2420-2430.e6 [PMID:28736168] - Jiang B, et al.
PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 2017. 114(32): p. E6695-E6702 [PMID:28739888] - Hochrein L,Machens F,Messerschmidt K,Mueller-Roeber B
PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res., 2017. 45(15): p. 9193-9205 [PMID:28911120] - Liu X, et al.
EIN3 and PIF3 Form an Interdependent Module That Represses Chloroplast Development in Buried Seedlings. Plant Cell, 2017. 29(12): p. 3051-3067 [PMID:29114016] - Wang Y,Li J,Deng XW,Zhu D
Arabidopsis noncoding RNA modulates seedling greening during deetiolation. Sci China Life Sci, 2018. 61(2): p. 199-203 [PMID:29143279] - Ma Q,Wang X,Sun J,Mao T
Coordinated Regulation of Hypocotyl Cell Elongation by Light and Ethylene through a Microtubule Destabilizing Protein. Plant Physiol., 2018. 176(1): p. 678-690 [PMID:29167353] - Qiu Y, et al.
Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nat Commun, 2017. 8(1): p. 1905 [PMID:29199270] - Xin X, et al.
Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3. J. Exp. Bot., 2018. 69(3): p. 423-439 [PMID:29244171] - Ni M,Tepperman JM,Quail PH
PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell, 1998. 95(5): p. 657-67 [PMID:9845368]
|